SINCE1915

# YASKAWAAC Drive Fan, Pump \& HVAC E1000 

400 V Class, 0.75 to 630 kW


The Green Inverter

## SuperEnergy-saving

## High Efficiency driven Induction Motor

ITheoretical Maximum Energy Saving Operation With lighter load, the
efficiency tends to be lower. Under energy-saving control, it helps to improves the efficiency up to the theoretical maximum efficiency based on the Steinmetz's motor characteristics calculation. The motor operation cost can drastically be reduced.


D More Energy Saving!
The graph below shows the energy required for the operation of air blower control by inverter, and with inverter + energysaving control.

- With inverter control, power saving from P1 to P2
- With energy-saving control, power saving from P2 to P3



## Drive Optimization Corresponds to Load \&

 Temperature changesWith lighter load, the voltage is reduced to keep up with the efficiency. In case of heavier load, the voltage will increase to maintain a high torque operation.

The drive will search for optimum drive point automatically, even though the electrical and mechanical characters of the motor or machine changed during the operation.
It helps to prolongs the life of motor due to the influence of temperature.
Slip-Torque-Efficiency character



Capable of Driving Induction \& Synchironous
Not only driving induction motor but also synchronous motor and with just one parameter change

- Capable of switching between the induction motor and the synchronous motor through parameter setting


Synchronous Motors Is More Efficient Drive Than High Efficient Induction Motors
$\triangle$ Even though high efficiency induction motor has good performance at rated speed and rated load, but synchronous motor has the best performance on all speed range and load condition


- Characteristics of frequency - total efficiency (example of 400V, 3.7kW)


## Drive Constant Torque Compressor With High Efficien: cy. (IM \& SM)

With auto torque boost function, it can start constant torque compressor easily.
$\checkmark$ Even with load fluctuation, the hunting prevention control can maintain the machine stability


## Control Stable Pressure And High Efficiency For Constant Torque Compressor

Optimum drive by energy saving control and overshoot suppression
High performance PID control function can prevents pressure and power fluctuation, and thus maintain stable operation.

- Commercial power supply (Load/Unload - E1000 (Inverter Drive) Method)


(Note) Comparison run of 132 kW motor at $60 \%$ of load ratio



Average power $82.8(\mathrm{~kW})$

## Easeofoperation \& Compliancemitit Enotionment

## Built-In Energy-Saving Control With Auto-Tuning

 Function| B Both the induction motor and the synchronous motor have built-in AutoTuning function to achieve the highest performance levels possible. <br> Stationary and Rotational Auto-Tuning can be selected. |  |  |  |
| :---: | :---: | :---: | :---: |
| - Types of Auto-Tuning |  |  |  |
| Induction motor Auto-Tuning |  | Synchronous motor Auto-Tuning |  |
| Rotational Auto-Tuning | Applications requiring energysaving control, or high control performance. <br> In addition, it will be implemented when carrying out the presumption type speed search. | Synchronous motor Parameter setting | There are motor nameplate or test reports, etc. Therefore, the parameters can be set when the detailed data of the motor is known. |
|  |  | Synchronous | Motor parameters necessary for auto-tuning under the stationary |
| Stationary Line-to-Line resistance Auto-Tuning | When the cable length is changed, or when the motor capacity does not match the inverter capacity, the control performance can be improved.In addition, it will be implemented when carrying out the presumption type speed search. | Stationary AutoTuning | stat |
|  |  | Stationary armature resistance AutoTuning | When the cable length is changed, or when the motor capacity does not match the inverter capacity, the control performance can be improved.In addition, it will be implemented when carrying out the presumption type speed search. |
| Tack | r Lost and | OVe |  |

- 2 types of momentary power loss compensation functions can be selected.
$\triangle$ Can be used for the sensorless control of the induction motor or the synchronous motor
Speed search function
It can restart easily by searching for a rotary speed under a coasting speed.


## Major Application

Fluid machine that is installed with a rotator, such as fan and blower, etc.


KEB (Kinetic Energy Back-up) function
Keep the running without allowing it to coast.

## Major Application

A situation requires an emergency stop at the time of an momentary power loss


## Environmental Features

## Environment-resistant design

- An environment-resistant enhanced product that is moisture-proof, dust-resistant, oil-resistant and vibration-resistant, etc.


## Compliance RoHS

- The standard product complies with the RoHS (European Restriction Of Hazardous Substances) directive



## Noise Reduction

Swing PWM mode is adopted, reducing harsh noise while suppressing the electromagnetic interference

Noise comparison on that of former products with the Swing PWM mode
| Former products |
| E1000 |

(Note) Carry out frequency analysis for noise values to compare its peak

## Suppressing Power Supply Harmonics

A A DC reactor minimizes harmonic distortion, standard on drives 30 kW and above.


## High Performance l/O function

## $4 \sim 20 \mathrm{~mA}$ output available

It can monitor the cumulative power consumption

- In addition to monitoring the power, it can also monitor the cumulative power consumption.
- Like the cumulative electricity meter available in the market, it can output multifunction pulses signal to host PLC
- These values can be monitored by using the communication options.


## Easyofoperation \& Compliancewith Envtronment

## Easy Maintenance

## Engineering Tool DriveWizard Plus*

$\triangle$ Manage the unique settings for all your drires right on your PC.

- An indispensable tool for drive setup and maintenance. Edit parameters, access all monitors, create customized operation sequences, and observe drive performance with the oscilloscope function.

The Drive Replacement feature in DriveWizard Plus saves valuable time during equipment replacement and application upgrades by converting previous Yaskawa product parameter values to the new E1000 parameters automatically.

- A USB port is provided for easy connection to the PC.

- Connect with the PC via the USB port
(Note) A communication porte for the original WV103 cable is provided. Please remove the operator before use.


## Easy Set-Up And Maintenance

Standard LED operator is provided with a built-in copy function.
Easily upload/download the parameters.
General-purpose LAN cables can be used for operator extension cord.
$\triangle$ LCD digital operator option is provided.
$\triangle$ The option is provided with a USB copy unit, and can also copy parameters of the inverter.
$\triangle$ In the set-up mode, minimal parameters necessary for operation can be set.
$\triangle$ The parameters changed can be easily confirmed in the calibration mode (comparison mode).


## Customization Of Inverter To The User Preference

Visual programming function DriveWorksEZ is included Via the drag-and-drop operation of the PC, it can simply compile the inverter into a special inverter applicable to the machinery of the user.
It can also compile special actions or new detection functions, and write in the inverter.

- Compilation detection function

For example: machinery aging diagnosis (machinery torque ripple detection) function

(Note) Please inquire separately when you
need to use this function.

## Breeze-Easy Setup

I Immediate set-up with Application Presets E1000 automatically sets parameters needed for most major applications. Simply selecting the appropriate application instantly optimizes the drive for top performance, saving enormous time setting up for a trial run.


Set simply via parameters
The optimum values of the parameters of various items required for operation will be automatically set by simply selecting the application.


| Setting | Application |
| :---: | :--- |
| 00 | General-purpose |
| 01 | Water Supply Pump |
| 03 | Fan for air supply and exhaust |
| 04 | AHU (HVAC) fan |
| 05 | Air compressor |

## Various Communication Option Cards

Standard RS-422/485 communication function is provided
If the communication option cards are installed, they can be used for various on-site networks, such as PROFIBUSDP* ${ }^{*}$, DeviceNet ${ }^{*}$, CC-Link ${ }^{*}$, CANopen ${ }^{*}$, LONWORKS ${ }^{*}$ and MECHATROLINK-II*, etc.

* : Available soon
(Note) The product names are registered trademarks of various companies
$\triangle$ They can save wiring and space for convenient design, installation and maintenance of machinery


## Safety \& Cigh Reliability

## Safe Environment

## Controlled Stop Despite Power Loss

Should a power outage occur, E1000 can bring the application to controlled stop quickly and safely using the KEB function.
Quickly ramp to stop with KEB funtion
[Most suitable application]
A situation requires an emergency stop at the time of an momentary power loss.
| Previous model |

| E1000 |


## Long Life Performance

## 10 years of Durable Performance

Cooling fan, capacitors, relays, and IGBTs have been carefully selected and designed for a life expectancy up to ten years.*
*: Assumes the drive is running continuously for 24 hours a day at $80 \%$ load with an ambient temperature of $40^{\circ} \mathrm{C}$.

## Performance Life Monitors

Yaskawa's latest drive series is equipped with performance life monitors that notify the user of part wear and maintenance periods to prevent problems before they occur.
The operation time, operation times, peak current, overload state and degradation parts state can be monitored via the digital operator.

## Easy Maintenance

## The First Terminal Board with a Parameter Backup

 FunctionThe terminal block's ability to save parameter setting data makes it a breeze to get the application back online in the event of a failure requiring drive replacement.

Detachable terminal block with parameter backup function

Built-in parameter

| Name | Number | Setting |
| :--- | :---: | :---: |
| Selection of control <br> mode | A1-02 | 0 |
| Selection of frequency <br> command | b1-01 | 1 |
| Selection of operation <br> command | b1-02 | 1 |
|  |  |  |

Less dust and easy replacement with top mounted fan design


## Machine Protection

In addition to extra-large torque detection, extrasmall torque can also be detected
The mechanical system can be protected without expensive detective instruments.

D Different from the electronic thermal protection, it can be set independently.

## Continuous Operation

Automatic continuous operation function when the frequency losses is provided
D During operation, even with the frequency command of the analog or pulse train losses, it can still continue to operate automatically.
(It can be selected by parameter)

## Standard Specifications

## 400 V Class

|  |  | Specifications |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Model: CIMR-E[4A | 0002 | 0004 | 0005 | 0007 | 0009 | 0011 | 0018 | 0023 | 0031 | 0038 | 0044 | 0058 | 0072 | 0088 |
| Maximum applicable motor capacity (kW) *1 |  | 0.75 | 1.5 | 2.2 | 3 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 |
| Input | Rated input current (A) *2 | 2.1 | 4.3 | 5.9 | 8.1 | 9.4 | 14 | 20 | 24 | 38 | 44 | 52 | 58 | 71 | 86 |
| Output | Rated output capacity (kVA) *3 | 1.6 | 3.1 | 4.1 | 5.3 | 6.7 | 8.5 | 13.3 | 17.5 | 24 | 29 | 34 | 44 | 55 | 67 |
|  | Rated output current (A) *4 | 2.1 | 4.1 | 5.4 | 6.9 | 8.8 | 11.1 | 17.5 | 23 | 31 | 38 | 44 | 58 | 72 | 88 |
|  | Cumulatively calculated overload starting current (A) *5 | 2.4 | 4.6 | 6.0 | 7.4 | 9.7 | 12.4 | 19.6 | 24 | 32 | 42 | 49 | 61 | 81 | 99 |
|  | Overload tolerance | 120\% of rated output current for 60 seconds |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Carrier frequency | $2 \sim 15 \mathrm{kHz}$ (It can be changed via parameters.) |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Maximum output voltage (V) | 3 -phase 380~480V (corresponding input voltage) |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Maximum output frequency (Hz) | 200 Hz (It can be changed via parameters.) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Power supply | Rated voltage, rated frequency | AC: 3-phase 380~480V $50 / 60 \mathrm{~Hz}$ DC: $510 \sim 680 \mathrm{~V}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Allowable voltage fluctuation | -15~10\% |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Allowable frequency fluctuation | $\pm 5 \%$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Power-supply device capacity (kVA) | 2.3 | 4.3 | 6.1 | 8.1 | 10.0 | 14.5 | 19.4 | 28.4 | 37.5 | 46.6 | 54.9 | 53.0 | 64.9 | 78.6 |


|  | Item | Specifications |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Model: CIMR-E $\square 4 \mathrm{~A}$ | 0103 | 0139 | 0165 | 0208 | 0250 | 0296 | 0362 | 0414 | 0515 | 0675 | 0930 | 1200 |
| Maximum applicable motor capacity (kW) *1 |  | 55 | 75 | 90 | 110 | 132 | 160 | 185 | 220 | 250 | 355 | 500 | 630 |
| Input | Rated input current (A) *2 | 105 | 142 | 170 | 207 | 248 | 300 | 346 | 410 | 465 | 657 | 922 | 1158 |
| Output | Rated output capacity (kVA) *3 | 78 | 106 | 126 | 159 | 191 | 226 | 276 | 316 | 392 | 514 | 709 | 915 |
|  | Rated output current (A) *4 | 103 | 139 | 165 | 208 | 250 | 296 | 362 | 414 | 515 | 675 | 930 | 1200 |
|  | Cumulatively calculated overload starting current (A) *5 | 115 | 141 | 170 | 213 | 256 | 332 | 405 | 464 | 577 | 756 | 1042 | 1344 |
|  | Overload tolerance | $120 \%$ of rated output current for 60 seconds |  |  |  |  |  |  |  |  |  |  |  |
|  | Carrier frequency | $2 \sim 10 \mathrm{kHz}$ (It can be changed via parameters.) |  |  |  |  |  |  | $2 \sim 5 \mathrm{kHz}$ (It can be changed via parameters.) |  |  |  |  |
|  | Maximum output voltage (V) | 3 -phase 380~480V (Relative to input voltage) |  |  |  |  |  |  |  |  |  |  |  |
|  | Maximum output frequency (Hz) | 200 Hz (It can be changed via parameters.) |  |  |  |  |  |  |  |  |  |  |  |
| Power supply | Rated voltage, rated frequency | AC: 3-phase 380~480V $50 / 60 \mathrm{~Hz}$ DC: $510 \sim 680 \mathrm{~V}$ |  |  |  |  |  |  |  |  |  |  |  |
|  | Allowable voltage fluctuation | -15~10\% |  |  |  |  |  |  |  |  |  |  |  |
|  | Allowable frequency fluctuation | $\pm 5 \%$ |  |  |  |  |  |  |  |  |  |  |  |
|  | Power-supply device capacity (kVA) | 96.0 | 129.9 | 155.5 | 189 | 227 | 274 | 316 | 375 | 416 | 601 | 843 | 1059 |

*1 The maximumly applicable motor capacity is the capacity of the 4-pole, $50 \mathrm{~Hz}, 400 \mathrm{~V}$ standard motor manufactured by the Company.The more rigorous selection method is to make the rated output current of the inverter greater than the rated current of the motor when selecting the model.
*2 Refer to the rated output current value. This value is not only affected by the power transformer, the reactor at the input side and the wiring conditions, but also fluctuates with the impedance at the power supply side.
*3 Rated output capacity is calculated with a rated output voltage of 440 V .
*4 Increasing the carrier frequency requires a reduction in current.
*5 The cumulatively calculated overload starting current is the objective current value when the inverter starts to cumulatively calculate the overload fault (OL2) of the inverter.The inverter will continue to operate when it exceeds the rated output current value and lower than such current value
However, it is noted that, when the ambient temperature is too high or the ventilation is poor, the heat sink overheat alarm (OH1) or heat sink overheat fault may occur At this time when the inverter capacity needs to be improved or the inverter gives an overheat alarm, it will continue to operate using the progressive frequency decrease

Model Designation


## Standard Specifications

## Common Specifications

(Note) In order to extend the product life of the converter, please install the inverter under the best circumstances.

| Item |  | Specifications |
| :---: | :---: | :---: |
| Control characteristics | Control method | V/f control, vector control for PM |
|  | Frequency control range | $0.01 \sim 200 \mathrm{~Hz}$ (varies as per the inverter capacity) |
|  | Frequency accuracy (temperature fluctuation) | Digital reference: within maximum output frequency $\pm 0.01 \%\left(-10 \sim+40^{\circ} \mathrm{C}\right)$ <br> Analog reference: within maximum output frequency $\pm 0.1 \%\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$ |
|  | Frequency setting resolution | Digital reference: 0.01 Hz Analog reference: $0.03 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (11bit) |
|  | Output frequency resolution (operation resolution) | 0.001 Hz |
|  | Frequency setting signal | -10~10V, $0 \sim 10 \mathrm{~V}, 4 \sim 20 \mathrm{~mA}$, pulse train |
|  | Starting torque | V/f control $150 \% / 3 \mathrm{~Hz}$, vector control $100 \% / 5 \%$ speed for PM |
|  | Speed control range | V/f control 1:40, vector control 1:20 for PM |
|  | Speed control accuracy |  |
|  | Speed response | 3 Hz (V/f control) |
|  | Acceleration/deceleration time | 0.00~6,000.0 seconds (separate setting of acceleration or deceleration: 4 types of switching) |
|  | Braking torque | About 20\% |
|  | Voltage/frequency characteristics | Any program, V/f curve |
|  | Main control functions | Momentary power loss restart, speed search, overtorque detection, 8-speed operation (maximum), acceleration/ deceleration switch, S-shaped acceleration/deceleration, 3-wire system sequential control, DWELL function, cooling fan ON/OFF function, slip frequency compensation, torque compensation, frequency jump, upper/lower limit setting of frequency commands, DC brake on startup/stop, overexcited deceleration, high slip frequency brake, PI control (with suspension function), energy-saving control, MEMOBUS communication (maximum 115.2kbps for RS-422/485), fault retry, DriveWorksEZ (customization function), detachable terminal block with parameter backup function, KEB, overexcited deceleration, overvoltage suppression function and insufficient torque detection, etc. |
| Protective functions | Motor protection | Electronic thermal protection |
|  | Momentary overcurrent protection | Stop when greater than 175\% of the rated output current |
|  | Overload protection | Stop at 120\% of the rated output current within 60 seconds *2 |
|  | Overvoltage protection | Class 400 V : stop when the DC voltage in the main loop is greater than 820 V approximately |
|  | Undervoltage Protection | Class 400V: stop when the DC voltage in the main loop is less than 380 V approximately |
|  | Momentary power loss compensation | Stop for more than 15 ms approximately *3. Depending on the parameter settings, the power loss will be restored in about 2 seconds, and the operation will continue * 4 |
|  | Heat sink overheat protection | Protected by thermistors |
|  | Stalling prevention | To prevent stalling during acceleration/deceleration, and to prevent stalling during operation |
|  | Ground Protection | Protect via the electronic loop *5 |
|  | Display during charging | Before the DC voltage in the main loop reaches less than about 50 V , the charging indicator will be on |
| Environment | Installation site | Indoor |
|  | Ambient temperature | $-10 \sim 40^{\circ} \mathrm{C}$ (enclosed wall-mount type), $-10 \sim 50^{\circ} \mathrm{C}$ (in-cabinet-mount type) |
|  | Humidity | Below 95\%RH (no condesation) |
|  | Storage temperature | $-20 \sim 60^{\circ} \mathrm{C}$ (short-time temperature during transport, etc.) |
|  | Altitude | Below 1000m |
|  | Vibration | $\begin{aligned} & 10 \sim 20 \mathrm{~Hz}: 9.8 \mathrm{~m} / \mathrm{s}^{2} 20 \sim 55 \mathrm{~Hz}: 5.9 \mathrm{~m} / \mathrm{s}^{2}(4 \mathrm{~A} 0002 \sim 4 \mathrm{~A} 0675) \\ & 2.0 \mathrm{~m} / \mathrm{s}^{2}(4 \mathrm{~A} 0208 \sim 4 \mathrm{~A} 0362) \end{aligned}$ |
| Protective design |  | In-cabinet-mount type (IP00), enclosed wall-mount type (NEMA TYPE 1) *6 |

*1 Depending on different installation conditions and motor types, the speed control precision varies. Please contact the Company for more information.
*2 When output frequency is less than 6 Hz , even it is within $120 \%$ of the rated output current and 60 seconds, the overload protection function may act.
*3 Depending on the rotary speed or load conditions, the deceleration time may be shorter.
*4 Vary depending on the capacity.For an inverter with a model below Type CIMR-E■4A0002~4A0031, in order to ensure an momentary power loss compensation of 2 seconds, an momentary power loss compensation unit needs to be used.
*5 Since there is possibility of grounding short circuit inside the operating motor coil, it may play a protective role in the following conditions now and then.

- Low-resistance grounding short circuit of motor cables or terminal blocks, etc.

When the power is on under a grounding short circuit state
*6 After removing the upper protective cover of NEMA Type1 converter (4A0002~4A0044), the protective grade will change to IP20.

## Standard Connection Diagram


*1 When installing the DC reactor (option), please be sure to remove the short circuit splice between Terminals +1 and +2 .CIMR-E $\square 4$ A0058~4A0675 converter is provided with a builtin DC reactor.
*2 When a self-cooling motor is adopted, the cooling fan motor is unnecessarily to be wired.
*3 When the inverter is connected to the control power supply, if the main loop is closed only, please use 24 V control power supply unit (option)
*4 Refer to the connection conditions (factory setting) of the sequential control input signals (S1~S8) during the sequential control connection (0V common port/common-emitter mode) Refer to the connection conditions (factory setting) of the sequential control input signals (S1~S8) during the sequential control connection ( 0 V common port/common-emitter mode)
according to the voltage-free contacts or NPN transistors. When carrying out the sequential control connection according to PNP transistors (+24V common port/common collector according to the voltage-free contacts or NPN transistors. When carrying out the sequential
mode) or setting a +24 V power supply outside the inverter, please refer to the User Guide.
*5 The maximum current capacity of the power supply is 150 mA .
*6 Both the maximum output current capabilities of $+V$ and $-V$ voltages of the control loop terminals are 20 mA .Please do not short circuit between $A C s$ of the control loop terminals +V and- V . Otherwise, it will cause a malfunction or fault.
*7 For Terminal A2, the voltage command input or current command input (factory setting) can be selected via the toggle switch S1.
*8 For Terminal A3, the analog input or PTC input can be selected via the toggle switch S4
*9 When using the MEMOBUS communication, if an end inverter is adopted, then the terminal resistor (toggle switch S2) shall be connected.
*10 Multi-functional analog monitor outputs are the outputs for analog frequency meters, ammeters, voltmeters, wattmeters and other indicating meters. They cannot be used for feedback control and other control operations.
*11 The common-emitter/common collector mode settings of the hardware base lock are the same as those of the sequential control input. When selecting the external power supply via Jumper S3 instead of using the hardware base lock, the short circuit wire of the hardware base lock shall be unplugged to connect an external power supply.
*12 When stopping via an external safety switch, please be sure to remove the short circuit wires between $\mathrm{H} 1-\mathrm{HC}$ and $\mathrm{H} 2-\mathrm{HC}$.
*13 When using the fault retry function, if L5-02 (fault contact output action selection in the fault retry) is set to 1 (output fault contact in the fault retry) for use, then the fault signal will be output in the fault retry, and at the same time, the power will be cut off.Please note when cutting off the loop.
The factory setting of L5-02 is 0 (do not output fault contacts in the fault retry).
Warning! Safety measures on reboot of the machine
Please wire the operation/stop loop and safety loop correctly, and confirm that the machinery is in a normal state after the inverter is powered on.If the wiring is incorrect, personal injury may be caused due to sudden starts of the machinery.

## External Dimensions

## Enclosure Panel (NEMA Type1)



Figure 2

External dimensions (Enclosure Panel (NEMA Type1): 400V Class)

|  | Dimensions (mm) |  |  |  |  |  |  |  |  |  |  |  |  | Gross <br> Weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIMR-E $\square 4$ A | Figure | W | H | D | W1 | H0 | H1 | H2 | H3 | D1 | t1 | t2 | d |  |
| 0002 |  | 140 | 260 | 147 | 122 | - | 248 | 6 | - | 38 | 5 | - | For M5 | 3.2 |
| 0004 |  | 140 | 260 | 147 | 122 | - | 248 | 6 | - | 38 | 5 | - | For M5 | 3.2 |
| 0005 |  | 140 | 260 | 147 | 122 | - | 248 | 6 | - | 38 | 5 | - | For M5 | 3.2 |
| 0007 |  | 140 | 260 | 164 | 122 | - | 248 | 6 | - | 55 | 5 | - | For M5 | 3.4 |
| 0009 |  | 140 | 260 | 164 | 122 | - | 248 | 6 | - | 55 | 5 | - | For M5 | 3.5 |
| 0011 | 1 | 140 | 260 | 164 | 122 | - | 248 | 6 | - | 55 | 5 | - | For M5 | 3.5 |
| 0018 |  | 140 | 260 | 167 | 122 | - | 248 | 6 | - | 55 | 5 | - | For M5 | 3.9 |
| 0023 |  | 140 | 260 | 167 | 122 | - | 248 | 6 | - | 55 | 5 | - | For M5 | 3.9 |
| 0031 |  | 180 | 300 | 167 | 160 | - | 284 | 8 | - | 55 | 5 | - | For M5 | 5.4 |
| 0038 |  | 180 | 300 | 187 | 160 | - | 284 | 8 | - | 75 | 5 | - | For M5 | 5.7 |
| 0044 |  | 220 | 350 | 197 | 192 | - | 335 | 8 | - | 78 | 5 | - | For M6 | 8.3 |
| 0058 |  | 254 | 465 | 258 | 195 | 400 | 385 | 7.5 | 65 | 100 | 2.3 | 2.3 | For M6 | 23 |
| 0072 |  | 279 | 515 | 258 | 220 | 450 | 435 | 7.5 | 65 | 100 | 2.3 | 2.3 | For M6 | 27 |
| 0088 |  | 329 | 630 | 258 | 260 | 510 | 495 | 7.5 | 120 | 105 | 2.3 | 3.2 | For M6 | 39 |
| 0103 |  | 329 | 630 | 258 | 260 | 510 | 495 | 7.5 | 120 | 105 | 2.3 | 3.2 | For M6 | 39 |
| 0139 |  | 329 | 730 | 283 | 260 | 550 | 535 | 7.5 | 180 | 110 | 2.3 | 2.3 | For M6 | 45 |
| 0165 |  | 329 | 730 | 283 | 260 | 550 | 535 | 7.5 | 180 | 110 | 2.3 | 2.3 | For M6 | 46 |
| 0208 | ${ }_{* 1}^{2}$ | 456 | 960 | 330 | 325 | 705 | 680 | 12.5 | 255 | 130 | 3.2 | 3.2 | For M10 | 87 |
| 0250 |  | 504 | 1168 | 350 | 370 | 800 | 773 | 13 | 368 | 130 | 4.5 | 4.5 | For M12 | 106 |
| 0296 |  | 504 | 1168 | 350 | 370 | 800 | 773 | 13 | 368 | 130 | 4.5 | 4.5 | For M12 | 112 |
| 0362 |  | 504 | 1168 | 350 | 370 | 800 | 773 | 13 | 368 | 130 | 4.5 | 4.5 | For M12 | 117 |

[^0]
## Open-Chassis (IP00)



Figure 1


External dimensions (Open-Chassis (IP00): 400V Class)

|  | Dimensions (mm) |  |  |  |  |  |  |  |  |  |  | Gross Weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Model } \\ \text { CIMR-E } \square 4 \mathrm{~A} \end{gathered}$ | Figure | W | H | D | W1 | H1 | H2 | D1 | t1 | t2 | d |  |
| 0002 |  | 140 | 260 | 147 | 122 | 248 | 6 | 38 | 5 | - | For M5 | 3.2 |
| 0004 |  | 140 | 260 | 147 | 122 | 248 | 6 | 38 | 5 | - | For M5 | 3.2 |
| 0005 |  | 140 | 260 | 147 | 122 | 248 | 6 | 38 | 5 | - | For M5 | 3.2 |
| 0007 |  | 140 | 260 | 164 | 122 | 248 | 6 | 55 | 5 | - | For M5 | 3.4 |
| 0009 |  | 140 | 260 | 164 | 122 | 248 | 6 | 55 | 5 | - | For M5 | 3.5 |
| 0011 | $\begin{gathered} 1 \\ * 1 \end{gathered}$ | 140 | 260 | 164 | 122 | 248 | 6 | 55 | 5 | - | For M5 | 3.5 |
| 0018 |  | 140 | 260 | 167 | 122 | 248 | 6 | 55 | 5 | - | For M5 | 3.9 |
| 0023 |  | 140 | 260 | 167 | 122 | 248 | 6 | 55 | 5 | - | For M5 | 3.9 |
| 0031 |  | 180 | 300 | 167 | 160 | 284 | 8 | 55 | 5 | - | For M5 | 5.4 |
| 0038 |  | 180 | 300 | 187 | 160 | 284 | 8 | 75 | 5 | - | For M5 | 5.7 |
| 0044 |  | 220 | 350 | 197 | 192 | 335 | 8 | 78 | 5 | - | For M6 | 8.3 |
| 0058 |  | 250 | 400 | 258 | 195 | 385 | 7.5 | 100 | 2.3 | 2.3 | For M6 | 21 |
| 0072 |  | 275 | 450 | 258 | 220 | 435 | 7.5 | 100 | 2.3 | 2.3 | For M6 | 25 |
| 0088 |  | 325 | 510 | 258 | 260 | 495 | 7.5 | 105 | 2.3 | 3.2 | For M6 | 36 |
| 0103 |  | 325 | 510 | 258 | 260 | 495 | 7.5 | 105 | 2.3 | 3.2 | For M6 | 36 |
| 0139 | 2 | 325 | 550 | 283 | 260 | 535 | 7.5 | 110 | 2.3 | 2.3 | For M6 | 41 |
| 0165 | 2 | 325 | 550 | 283 | 260 | 535 | 7.5 | 110 | 2.3 | 2.3 | For M6 | 42 |
| 0208 |  | 450 | 705 | 330 | 325 | 680 | 12.5 | 130 | 3.2 | 3.2 | For M10 | 79 |
| 0250 |  | 500 | 800 | 350 | 370 | 773 | 13 | 130 | 4.5 | 4.5 | For M12 | 96 |
| 0296 |  | 500 | 800 | 350 | 370 | 773 | 13 | 130 | 4.5 | 4.5 | For M12 | 102 |
| 0362 |  | 500 | 800 | 350 | 370 | 773 | 13 | 130 | 4.5 | 4.5 | For M12 | 107 |

*1 After the protective cover of the CIMR-ED4A0002~0044 inverter is removed, its protective class will change to IP20.


| Model CIMR-ED4A | Dimensions (mm) |  |  |  |  |  |  |  |  |  |  | Weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Figure | W | H | D | W1 | H1 | H2 | D1 | t1 | t2 | d |  |
| 0414 | 3 | 500 | 950 | 370 | 370 | 923 | 13 | 135 | 4.5 | 4.5 | For M12 | 125 |
| 0515 | 4 | 670 | 1140 | 370 | 440 | 1110 | 15 | 150 | 4.5 | 4.5 | For M12 | 221 |
| 0675 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0930 | 5 | 1250 | 1380 | 370 | 1100 | 1345 | 15 | 150 | 4.5 | 4.5 | For M12 | 545 |
| 1200 |  |  |  |  |  |  |  |  |  |  |  | 555 |

## Peripherals Devices \& Options

|  |  | Interface options |
| :--- | :--- | :--- | :--- |

* Available soon


## Peripherals Devices \& Options (continued)

## 24V Power Supply

The 24 V Power Supply Option maintains drive control circuit power in the event of a main power outage. The control circuit keeps the network communications and I/O data operational in the event of a power outage. It supplies external power to the control circuit only.
(Note) Parameter settings cannot be changed when the inverter is operating solely from this powers supply.

The installed option adds 50 mm to the total depth of the inverter.


## Connection Diagram



Model, order number

| Model | Order No. |
| :---: | :---: |
| Class 400V: PS-A10H | PS-A10H |

For motors (400V) with capacity of 96 V or more, use this unit (as a backup power source) in the event of a power loss.
(Note) This unit is not required when using a UPS (uninterpretable power supply) for emergency operation.

## Peripherals Devices \& Options (continued)

## Fuse/Fuse Holder

In case of a component failure, in order to protect the system, it is recommended to connect a fuse or an MCCB (Moulded Case Circuit Breaker) at the inverter input side.
[Fuji Electric FA Components \& Systems Co., Ltd.]


Class 400V

| Inverter model CIMR-ED | Fuse |  | Fuse Holder |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Manufacturer: Fuji Electric FA Components \& Systems Co., Ltd. |  |  |  |
|  | Model | Rated fuse current (A) | Model | Quantity |
| 4A0002 | CR6L-20 | 20 | CMS-4 | 3 |
| 4A0004 | CR6L-30 | 30 | CMS-4 | 3 |
| 4A0005 | CR6L-50 | 50 | CMS-4 | 3 |
| 4A0007 | CR6L-50 | 50 | CMS-4 | 3 |
| 4A0009 | CR6L-50 | 50 | CMS-4 | 3 |
| 4A0011 | CR6L-50 | 50 | CMS-4 | 3 |
| 4A0018 | CR6L-75 | 75 | CMS-5 | 3 |
| 4A0023 | CR6L-75 | 75 | CMS-5 | 3 |
| 4A0031 | CR6L-100 | 100 | CMS-5 | 3 |
| 4A0038 | CR6L-150 | 150 | CMS-5 | 3 |
| 4A0044 | CR6L-150 | 150 | CMS-5 | 3 |
| 4A0058 | CR6L-200 | 200 | - | - |
| 4A0072 | CR6L-250 | 250 | - | - |
| 4A0088 | CR6L-250 | 250 | - | - |
| 4A0103 | CR6L-300 | 300 | - | - |
| 4A0139 | CR6L-350 | 350 | - | - |
| 4A0165 | CR6L-400 | 400 | - | - |
| 4A0208 | CS5F-600 | 600 | - | - |
| 4A0250 | CS5F-600 | 600 | - | - |
| 4A0296 | CS5F-600 | 600 | - | - |
| 4A0362 | CS5F-800 | 800 | - | - |
| 4A0414 | CS5F-800 | 800 | - | - |
| 4A0515 | CS5F-800 | 800 | - | - |
| 4A0675 | CS5F-1000 | 1000 | - | - |
| 4A0930 | CS5F-1200 | 1200 | - | - |
| 4A1200 | CS5F-1500 | 1500 | - | - |

Note: Required UL/CE certification, kindly refers to user guide for details.

## E1000

## Yaskawa Singapore Group

## YASKAWA ELECTRIC (SINGAPORE) PTE LTD

Address: 151 Lorong Chuan, \#04-02A New Tech Park Singapore 556741
Tel: +65 62823003 Fax: +65 62893003
Email: info.ysp@yaskawa.com.sg
Website: http://www.yaskawa.com.sg/

## YASKAWA ELECTRIC (THAILAND) CO., LTD.

Address: 252/125-126, 27th Floor, Tower B, Muang Thai-Phatra, Complex Building,
Rachadapisek Road, Huaykwang Bangkok 10310, Thailand.
Tel: +66 26932200 Fax: +66 26934200
Website: http://www.yaskawa.co.th/

## PT.YASKAWA ELECTRIC INDONESIA

Address: Secure Building - Gedung B,GF \& 1st F1
J1. Raya Protokol Halim Perdana Kusuma
Jakarta 13610, Indonesia
Tel: +62 2129826470 Fax: +62 2129826471
Website: http://www.yaskawa.co.id

## YASKAWA ELECTRIC VIETNAM CO., LTD

Ho Chi Minh Office
Address: Suite 1104, 11th Floor, Saigon Tower 29 Le Duan, Ben Nghe, Dist 1,
Ho Chi Minh City
Tel: +84 838228680 Fax: +84 838228780

## Hanoi Office

Address: 2nd Floor, Somerset Hoa Binh Hanoi
Tel: +84 436343953 Fax: +84 436543954


[^0]:    *1 Build-to-Order. Please contact with the agent or sales representative of the Company for inquiries.

