

LSIS

Upgraded for the global best worth!

Metasol

Molded Case Circuit Breaker / Earth Leakage Circuit Breaker
Marking and configuration 16
External configuration 18
Quick selection table (Molded Case Circuit Breakers) 20
Quick selection table (Earth Leakage Circuit Breakers) 30
Ratings 34
Accessories 74
Type numbering system 100
Characteristics curves 101
Dimensions 108
Technical information 126

LSIS

Metasol

$=$ Meta solution

Metasol

Molded Case Circuit Breaker / Earth Leakage Circuit Breaker

Upgrade of Meta-MEC series ...Metasol Low Voltage Circuit Breaker
 - $\mathrm{Ui}=1,000 \mathrm{~V}$
 - Uimp $=8 \mathrm{kV}$

- Compatible and differentiated design
- Compatible with the Meta-MEC
- Outlook differentiated design
- Same external dimension with MCCB and ELCB
- Upgrade the coordination
- Upgrade the coordination with Susol / Meta-MEC mass capacity
- Upgrade breaking capacity
- N100AF : 10 - 18kA
-S125AF : 25 - 37kA

- H250AF : 35 평 50kA
- N400AF : 25 - ${ }^{-1}$ 37kA

Metaso MCCB/ELCB
 (4) 1015

Metasol MCCB

Upgrade breaking capacity

Short-circuit breaking capacity

Metasol ELCB

Upgrade breaking capacity

Metasol MCCB/ELCB compatible and standard

- 100\% compatible with Meta-MEC series.
- Standardized dimension (Depth, Cutout) when the panel is made.

MCCB (Molded Case Circuit Breaker)

【ロ่o! iol

4 แด ใด


```
75\times130\times60mm
```


Metasol MCCB

[^0]- Same external dimension with MCCB and ELCB.

ELCB (Earth Leakage Circuit Breaker)

$75 \times 130 \times 60 \mathrm{~mm}$

```
90\times155 < 60mm
```

```
105\times165\times60mm
```


Metasol ELCB

Type	30AF	50AF	60AF	100AF	125AF	250AF	400AF	800AF
EBN		$\begin{gathered} \text { EBN50c } \\ \text { 14kA } \end{gathered}$	$\begin{gathered} \text { EBN60c } \\ \text { 14kA } \end{gathered}$	$\begin{gathered} \text { EBN100c } \\ 18 \mathrm{kA} \end{gathered}$		$\begin{aligned} & \text { EBN250c } \\ & 26 \mathrm{kA} \end{aligned}$	$\begin{gathered} \text { EBN400c } \\ 37 \mathrm{kA} \end{gathered}$	$\begin{aligned} & \text { EBN800c } \\ & 37 \mathrm{kA} \end{aligned}$
EBS	$\begin{gathered} \text { EBS30c } \\ 14 \mathrm{kA} \end{gathered}$	$\begin{gathered} \text { EBS50c } \\ \text { 18kA } \end{gathered}$	$\begin{gathered} \text { EBS60c } \\ \text { 18kA } \end{gathered}$		$\begin{gathered} \text { EBS } 125 \mathrm{c} \\ 37 \mathrm{kA} \end{gathered}$	$\begin{gathered} \text { EBS250c } \\ 37 \mathrm{kA} \end{gathered}$	$\begin{gathered} \text { EBS400c } \\ 50 \mathrm{kA} \end{gathered}$	$\begin{gathered} \text { EBS800c } \\ 65 \mathrm{kA} \end{gathered}$
EBH		$\begin{gathered} \text { EBH50c } \\ 50 \mathrm{kA} \end{gathered}$			$\begin{aligned} & \text { EBH125c } \\ & 50 \mathrm{kA} \end{aligned}$	$\begin{gathered} \text { EBH250c } \\ 50 \mathrm{kA} \end{gathered}$	$\begin{gathered} \text { EBH400c } \\ 65 \mathrm{kA} \end{gathered}$	
EBL							EBL400c	EBL800c

Note) Dimension is for 3 pole and breaking capacity is for AC460V.

Metasol MCCB/ELCB swemomenem

Various installable accessories

- Wider range of installable accessories compared to Meta MEC series.
- Composed of user friendly method.

System overview

Metasol MCCB/ELCB nemandacsomets

Internal accessories can be commonly used in all Metasol MCCB and ELCB (Notice: Exception of SHT, UVT in ELCB)

Alarm switch (AL)

Alarm switches offer provisions for immediate audio or visual indication of a tripped breaker due to overload, short-circuit, operation of shunt trip, or undervoltage trip conditions, operation of push button.
They are particularly useful in automated plants where operators must be signaled about changes in the electrical distribution system. This switch features a closed contact when the circuit breaker is tripped automatically. In other words, this switch does not function when the breaker is operated manually. Its contact is open when the circuit breaker is reset.

Auxiliary switch (AX)

Auxiliary switch is for applications requiring remote "On" and "Off" indication. Each switch contains two contacts having a common connection. One is open and the other closed when the circuit breaker is open, and vice-versa.

Undervoltage trip (UVT)

The undervoltage trip automatically opens a circuit breaker when voltage drops to a value ranging between 35% to 70% of the line voltage. The operation is instantaneous, and the circuit breaker cannot be reclosed until the voltage returns to 85% of line voltage.
Continuously energized, the undervoltage trip must be operating be fore the circuit breaker can be closed.

Shunt trip (SHT)

The shunt trip opens the mechanism in response to an externally applied voltage signal. LS shunt trips include coil clearing contacts that automatically clear the signal circuit when the mechanism has tripped.contact with live parts and thereby guarantee protection against direct contacts.

Metasol MCCB/ELCB stenandecesemeres

External accessories

Designed for various mount and user safety.

External accessories

Front and rear connection

Several kinds of terminals can be equipped with ELCBs as well as MCCBs.

- Terminals for front connection
- Rear connection terminals

Plug-in base

It makes to extract and/or rapidly replace the circuit breaker without having to touch connections. (Easy replacement and maintenance)

Direct \& Extended rotary handle
There are two types of rotary handles.

- Direct rotary handle (with or w/o key lock device)
- Extended rotary handle

Locking device

- Fixed padlock
- Removable padlock
- Key lock device on direct handle

Insulation barrier

These allow the insulation characteristics between the phases at the connections to be increased.

Insulation terminal cover

The terminal covers are applied to the circuit-breaker to prevent accidental contact with live parts and thereby guarantee protection against direct contacts.

Remote operation

It is a device that makes it possible to turn on / off the breaker even in the remote place. It is safe because it does not have to operate the handle of the circuit breaker by hand, and it is suitable for automation.

Marking and configuration

MCCB
MCCB model

- ABN: Economic type
- ABS: Standard type
- ABH: High capacity type

Standardized characteristics
Ui: Rated insulation voltage
Uimp: Impulse withstand
\quad voltage
Ue: Rated operational voltage
Icu: Ultimate breaking
capacity
Ics: Service breaking capacity

MCCB

ELCB

External configuration

(1) Handle

- Function of indications
- "On" "Off" "Trip"
- Resetting

When the handle indicates "Tripped" position it must first be reset by moving the handle to the "Off" position and then closing is possible

- trip-Free even if the handle is held at "On", the Breaker will trip if an over current flows
- Suitable for Verification of the main contact position under abnormal conditions because the handle doesn't indicate open position

(2) Arc-Extinguishing unit

LS patent technique PASQ
Arc-Extinguishing unit
PASQ : Puffer Assisted Self-Quenching

- Reduction of arc voltage for a short time

(3) Trip button (Push to trip)

- Enables tripping mechanically from outside, for confirming the operation of the accessory switches and the manual resetting function.

МССВ

A application of PASQ arc extinguishing

- The reduction of breaking time by applying PASQ arc extinguishing for inhibition of arc voltage for a short time.

A application of current limiting structure

- Current limiting repulsion structure (U fixed structure)
- Toggle structure
- When the operating unit repulses by short circuit current, repulsion structure at bigger angle.

ELCB

(1) Residual indication LED

- Normal situation is yellow, trio situation is red

(2) Residual test button

- Special design for upgrade to prohibit resistance accident

(3) Residual detection unit (ZCT + Main board)

- For upgrade the design is selected the 3 phase input power method and in case of Voltage problem, it can break residual current safely.

Upgrade coil operation by special design

- Sliding structure application of trip lever
- Trip special design by applying design Button method.
- Upgrade the testing unit

3 phase power supply method

- In case of 1 phase loss residual operation upgrade
- New IEC standard

Quick selection table
 Earth Leakage Circuit Breakers

ELCBs

Rated short-circuit breaking capacity (Icu) kA (Sym) , IEC 60947-2

AC	415/460V	14 (10)	14	18	50	14	18
	220/250V	30 (25)	30	35	100	30	35
$\mathrm{lcs}=\% \times \mathrm{lcu}$		100	100	100	100	100	100
Dimensions (mm)	$\begin{aligned} & \mathrm{W} \times \mathrm{H} \times \mathrm{D} \\ & (3 \text {-pole) } \end{aligned}$	$75 \times 130 \times 60 \mathrm{~mm}$ (Fig 1)	$75 \times 130 \times 60 \mathrm{~mm}$ (Fig 1)		$90 \times 155 \times 60 \mathrm{~mm}$ (Fig 2)	$75 \times 130 \times 60 \mathrm{~mm}$ (Fig. 1)	
More info.	Ratings	56 page	58 page		58 page	60 page	
	Curves	101 page	101 page		102 page	101 page	
	Drawings	116 page	116 page		117 page	116 page	

Note) 1. MCCBs can be applied to both 50 and 60 Hz
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
3. The short-circuit breaking capacities in () are applied to the rated current in (5, 10A)

(Fig. 1)

100AF				250AF	
N-type	S-type	H-type	N-type	S-type	H-type
EBN102c	-	-	EBN202c	-	-
EBN103c	EBS103c	EBH103c	EBN203c	EBS203c	EBH203c
EBN104c	EBS104c	EBH104c	-	EBS204c	EBH204c
Overload, Short-circuit and ground fault	Over an	ircuit ult		ad, Short-cir ground faut	
60, 75, 100	15, 20, 30,	5, 100, 125		50, 175, 200	
30, 100/200/500mA	30,	mA		00/200/500	
220/460				220/460	
6				6	
$\leq 0.1 \mathrm{sec}$				$\leq 0.1 \mathrm{sec}$	
18	37	50	26	37	50
35	85	100	65	85	100
100	100	100	100	100	100
$75 \times 130 \times 60 \mathrm{~mm}$ (Fig. 1)	$90 \times 155 \times 60 \mathrm{~mm}$ (Fig. 2)			$\times 165 \times 60 n$ (Fig. 3)	
62 page	64 page		66 page		
101 page	102 page		103 page		
116 page	117 page		118 page		

(Fig. 2)

(Fig. 3)

Quick selection table

Earth Leakage Circuit Breakers

ELCBs

AF	400AF			
Type	N-type	S-type	H-type	L-type
3-pole	EBN403c	EBS403c	EBH403c	EBL403c
4-pole	EBN404c	EBS404c	EBH404c	EBL404c
Protective function	Overload, Short-circuit and ground fault			
Rated current, In A	250, 300, 350, 400			
Rated residual current, I $\Delta \mathrm{n} \mathrm{mA}$	30, 100/200/500mA			
Rated operational voltage, Ue AC (V)	220/460	220/460	220/460	220/460
Rated impulse withstand voltage, Uimp	6	6	6	6
Residual current off-ime at l n n sec	$\leq 0.1 \mathrm{sec}$	$\leq 0.1 \mathrm{sec}$	$\leq 0.1 \mathrm{sec}$	$\leq 0.1 \mathrm{sec}$

Rated short-circuit breaking capacity (Icu) kA (Sym) , IEC 60947-2

AC	415/460V	37	50	65	85
	220/250V	50	75	85	125
$\mathrm{lcs}=\% \times \mathrm{lcu}$		100	100	100	75
Dimensions (mm)	$\begin{aligned} & \mathrm{W} \times \mathrm{H} \times \mathrm{D} \\ & \text { (3-pole) } \end{aligned}$	$140 \times 257 \times 109 \mathrm{~mm}$ (Fig. 4)			
More info.	Ratings	68 page			
	Curves	104 page			
	Drawings	119 page			

Note) 1. MCCBs other than 1,000/1200AF can be applied to both 50 and 60 Hz .
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.

(Fig. 4)

EBN53c

EBS53c

For more information

- Drawings	$>116,117$ page
- Trip curves	$>101,102$ page
- Accessories	>74 page
-Connection and mounting	>127 page

Ratings

Frame size			50AF					
Type and pole			N-type		S-type		H-type	
	2-pole (2-sensor)		EBN52c		-		-	
	3 -pole (3-sensor)		EBN53c		EBS53c		EBH53c	
	4-pole (3-sensor)		-		EBS54c		EBH54c	
Rated current, In			15-20-30-40-50A					
Rated residual current, I Δ n			30, 100/200/500mA (Adjustable)					
Residual current off-time at I Δn			$\leq 0.1 \mathrm{sec}$					
Rated operational voltage, Ue			AC: 220/460V					
Rated impulse withstand voltage, Uimp			6kV					
Wiring system	2-pole (2-sensor)		102W					
	3-pole (3-sensor)		1Ø2W, 1Ø3W, 3Ø3W					
	4-pole (3-sensor)		102W, 103W, 3Ø3W, 304W					
Rated short-circuit breaking			N-type		S-type		H-type	
capacity, Icu	AC	460 V	14kA		18kA		50kA	
		415 V	14 kA		18kA		50 kA	
		220/250V	30kA		35kA		100kA	
lcs=\%xIcu			100\%		100\%		100\%	
Protective function			Overload, Short-circuit and ground fault					
Type of trip unit			Thermal-Magnetic					
Magnetic trip range			$12 \times \ln$ (30A and under: 400A)					
Endurance	Mechanical		25,000 operations					
	Electrical		10,000 operations					
Connection	Standard		Front connection					
	Optional		Rear connection					
Mounting	Standard		Screw fixing					
Dimensions (mm)		Pole	2 p	3p	$3 p$	4 p	3p	4 p
		a	75	75	75	100	90	120
		b	130		130		155	
		c1 Note)	60		60		60	
		c2 Note)	64		64		64	
		d	82		82		82	
Weight, kg		Standard	0.5	0.7	0.7	0.9	1	1.2
Certification		Pole	2 p	3p	$3 p$	$4 p$	3p	4 p
CE marking		(ϵ	\bigcirc		\bigcirc		\bigcirc	

Note) 1. Depth by door cut size : C1 for large cut, C2 for small cut
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
3. 4-pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current.
4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity.

Ordering types

Breaker types

EBN type (14kA/460V)				
Rated current, In	Rated residual current, $1 \Delta \mathrm{n}: 30 \mathrm{~mA}$		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	2-pole	3-pole	2-pole	3-pole
15 A	EBN52c/15/30	EBN53c/15/30	EBN52c/15/100	EBN53c/15/100
20 A	EBN52c/20/30	EBN53c/20/30	EBN52c/20/100	EBN53c/20/100
30 A	EBN52c/30/30	EBN53c/30/30	EBN52c/30/100	EBN53c/30/100
40 A	EBN52c/40/30	EBN53c/40/30	EBN52c/40/100	EBN53c/40/100
50 A	EBN52c/50/30	EBN53c/50/30	EBN52c/50/100	EBN53c/50/100

EBS type (18kA/460V)				
Rated current, In	Rated residual current, I $\Delta \mathrm{n}$: 30mA		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	3-pole	4-pole	3-pole	4-pole
15 A	EBS53c/15/30	EBS54c/15/30	EBS53c/15/100	EBS54c/15/100
20 A	EBS53c/20/30	EBS54c/20/30	EBS53c/20/100	EBS54c/20/100
30 A	EBS53c/30/30	EBS54c/30/30	EBS53c/30/100	EBS54c/30/100
40 A	EBS53c/40/30	EBS54c/40/30	EBS53c/40/100	EBS54c/40/100
50 A	EBS53c/50/30	EBS54c/50/30	EBS53c/50/100	EBS54c/50/100

EBH type ($50 \mathrm{kA} / 460 \mathrm{~V}$)

Rated current, In	Rated residual current, I $\Delta \mathrm{n}: 30 \mathrm{~mA}$		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	3-pole	4-pole	3-pole	4-pole
15 A	EBH53c/15/30	EBH54c/15/30	EBH53c/15/100	EBH54c/15/100
20 A	EBH53c/20/30	EBH54c/20/30	EBH53c/20/100	EBH54c/20/100
30 A	EBH53c/30/30	EBH54c/30/30	EBH53c/30/100	EBH54c/30/100
40 A	EBH53c/40/30	EBH54c/40/30	EBH53c/40/100	EBH54c/40/100
50 A	EBH53c/50/30	EBH54c/50/30	EBH53c/50/100	EBH54c/50/100

Accessories

Electrical auxiliaries

AX	Auxiliary switch	
$\mathbf{A L}$	Alarm switch	
$\mathbf{A X}+\mathbf{A L}$	Combination switch	
Maximum possibilities		

T-position Not available
R-position Option of AX or AL or AX+AL
Note) For more detail see 74 page

External accessories

EBN50c EBS50c	EBH50c	Name
IB13	IB23	Insulation barrier
TCL13	TCL23	Terminal cover (Long) - Inde type, D-handle type, N-handle type
TCS13	TCS23	Terminal cover (Short) - Inde type, D-handle type, N-handle type
DH100	DH125	Rotary handle (Direct)
DHK100	DHK125	Rotary handle (Direct, Key lock)
EH100	EH125	Rotary handle (Extended)
-	RTB2	Rear terminal (Bar)
RTR1	RTR2	Rear terminal (Round)
Handle lock		
Note) For more detail see 82 page - Inde type: This cover is used without auxiliary handle. - D-handle type: This cover is used with D-handle. - N -handle type: This cover is used with N -handle.		

125AF ELCB

 EBS125c, EBH125c

EBS103c

EBH103c

For more information

- Drawings	>117 page
- Trip curves	>102 page
- Accessories	>74 page
- Connection and mounting	>127 page

Ratings

Frame size			125AF			
Type and pole			S-type		H-type	
	2-pole (2-sensor)		-		-	
	3 -pole (3-sensor)		EBS103c		EBH103c	
	4-pole (3-sensor)		EBS104c		EBH104c	
Rated current, In			15-20-30-40-50-60-75-100-125A			
Rated residual current, l $\Delta \mathrm{n}$			30, 100/200/500mA (Adjustable)			
Residual current off-time at $\mathrm{I} \Delta \mathrm{n}$			$\leq 0.1 \mathrm{sec}$			
Rated operational voltage, Ue			AC: $220 / 460 \mathrm{~V}$			
Rated impulse withstand voltage, Uimp			6 kV			
Wiring system	2-pole (2-sensor)		-			
	3 -pole (3-sensor)		102W, 103W, 3Ø3W			
	4-pole (3-sensor)		1Ø2W, 103W, 3Ø3W, 3Ø4W			
Rated short-circuit breaking			N-type		S-type	
capacity, Icu	AC	460V	37kA		50kA	
		415 V	37kA		50kA	
		220/250V	85kA		100kA	
lcs=\%xIcu			100\%		100\%	
Protective function			Overload, Short-circuit and ground fault			
Type of trip unit			Thermal-Magnetic			
Magnetic trip range			$12 \times \ln$ (30A and under: 400A)			
Endurance	Mechanical		25,000 operations			
	Electrical		10,000 operations			
Connection	Standard		Front connection			
	Optional		Rear connection			
Mounting	Standard		Screw fixing			
Dimensions (mm)		Pole	3 p	4 p	$3 p$	4 p
		a	90	120	90	120
		b	155	155	155	155
		c1 Note)	60	60	60	60
		c2 Note)	64	64	64	64
		d	82	82	82	82
Weight, kg		Standard	1	1.2	1	1.2
Certification		Pole	3 p	4p	3 p	4 p
CE marking		($€$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

[^1]Ordering types

Breaker types

EBS type (37kA/460V)				
Rated current, In	Rated residual current, $1 \Delta \mathrm{n}$: 30mA		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	3-pole	4-pole	3-pole	4-pole
15 A	EBS103c/15/30	EBS104c/15/30	EBS103c/15/100	EBS104c/15/100
20 A	EBS103c/20/30	EBS104c/20/30	EBS103c/20/100	EBS104c/20/100
30 A	EBS103c/30/30	EBS104c/30/30	EBS103c/30/100	EBS104c/30/100
40 A	EBS103c/40/30	EBS104c/40/30	EBS103c/40/100	EBS104c/40/100
50 A	EBS103c/50/30	EBS104c/50/30	EBS103c/50/100	EBS104c/50/100
60 A	EBS103c/60/30	EBS104c/60/30	EBS103c/60/100	EBS104c/60/100
75 A	EBS103c/75/30	EBS104c/75/30	EBS103c/75/100	EBS104c/75/100
100 A	EBS103c/100/30	EBS104c/100/30	EBS103C/100/100	EBS104c/100/100
125 A	EBS103c/125/30	EBS104c/125/30	SS103c/125/1	S104c/1

EBH type ($50 \mathrm{kA} / 460 \mathrm{~V}$)				
Rated current, In	Rated residual current, $\mathrm{I} \Delta \mathrm{n}$: 30mA		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	3 -pole	4-pole	3-pole	4-pole
15 A	EBH103c/15/30	EBH104c/15/30	EBH103c/15/100	EBH104c/15/100
20 A	EBH103c/20/30	EBH104c/20/30	EBH103c/20/100	EBH104c/20/100
30 A	EBH103c/30/30	EBH104c/30/30	EBH103c/30/100	EBH104c/30/100
40 A	EBH103c/40/30	EBH104c/40/30	EBH103c/40/100	EBH104c/40/100
50 A	EBH103C/50/30	EBH104c/50/30	EBH103c/50/100	EBH104c/50/100
60 A	EBH103c/60/30	EBH104c/60/30	EBH103c/60/100	EBH104c/60/100
75 A	EBH103c/75/30	EBH104c/75/30	EBH103c/75/100	EBH104c/75/100
100 A	EBH103c/100/30	EBH104c/100/30	EBH103C/100/100	EBH104c/100/100
125 A	3H103c/125/30	H104c/125/3	03c/125/	EBH104c/125/100

Accessories

Electrical auxiliaries

Maximum possibilities
T-position Not available

R-position Option of AX or AL or AX+AL
Note) For more detail see 74 page

External accessories

EBS60c EBN60c	Name
IB23	Insulation barrier
TCL23	Terminal cover (Long) - Inde type, D-handle type, N-handle type TCS23
Terminal cover (Short)	
- Inde type, D-handle type, N-handle type	
DH125	Rotary handle (Direct)
DHK125	Rotary handle (Direct, Key lock)
EH125	Rotary handle (Extended)
RTB2	Rear terminal (Bar)
RTR2	Rear terminal (Round)
Handle lock	

Note) For more detail see 82 page

- Inde type: This cover is used without auxiliary handle.
- D-handle type: This cover is used with D-handle.
- N -handle type: This cover is used with N -handle.

EBN203c

EBS203c

For more information

- Drawings	>118 page
- Trip curves	>103 page
- Accessories	>74 page
- Connection and mounting >127 page	

Ratings

Frame size			250AF					
Type and pole			N-type		S-type		H-type	
	2-pole (2-sensor)		EBN202c		-		-	
	3 -pole (3-sensor)		EBN203c		EBS203c		EBH203c	
	4-pole (3-sensor)		-		EBS204c		EBH204c	
Rated current, In			100-125-150-175-200-225-250A					
Rated residual current, I Δ n			30, 100/200/500mA (Adjustable)					
Residual current off-time at $1 \Delta n$			$\leq 0.1 \mathrm{sec}$					
Rated operational voltage, Ue			AC: 220/460V					
Rated impulse withstand voltage, Uimp			6kV					
Wiring system	2-pole (2-sensor)		102W					
	3 -pole (3-sensor)		102W, 103W, 3Ø3W					
	4-pole (3-sensor)		1Ø2W, 1Ø3W, 3Ø3W, 3Ø4W					
Rated short-circuit breaking			N-type		S-type		H-type	
capacity, Icu		460V	26kA		37kA		50kA	
		415 V	26kA		37kA		50kA	
		220/250V	65kA		85kA		100kA	
ICS=\% \times Icu			100\%		100\%		100\%	
Protective function			Overload, Short-circuit and ground fault					
Type of trip unit			Thermal-Magnetic					
Magnetic trip range			12xIn					
Endurance	Mechanical		20,000 operations					
	Electrical		5,000 operations					
Connection	Standard		Front connection					
	Optional		Rear connection					
Mounting	Standard		Screw fixing					
Dimensions (mm)		Pole	2 p	$3 p$	3 p	4 p	$3 p$	4 p
		a	105	105	105	140	105	140
a		b	165		165		165	
		c1 Note)	60		60		60	
		c2 Note)	64		64		64	
		d	87		87		87	
Weight, kg		Standard	1.1	1.2	1.2	1.5	1.2	1.5
Certification		Pole	2 p	$3 p$	$3 p$	4 p	$3 p$	4 p
CE mark		(\in	\bigcirc		\bigcirc		\bigcirc	

Note) 1. Depth by door cut size : c1 for large cut, c2 for small cut
2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB.
3. 4 -pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current
4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity.

Ordering types

Breaker types

EBN type (25kA/460V)				
Rated current, in	Rated residual current, $1 \Delta \mathrm{n}: 30 \mathrm{~mA}$		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	2-pole	3 -pole	2-pole	3-pole
100 A	EBN202c/100/30	EBN203c/100/30	EBN202c/100/100	EBN203c/100/100
125 A	EBN202c/125/30	EBN203c/125/30	EBN202c/125/100	EBN203c/125/100
150 A	EBN202c/150/30	EBN203c/150/30	EBN202c/150/100	EBN203c/150/10
175 A	EBN202c/175/30	EBN203c/175/30	EBN202c/175/100	EBN203c/175/100
200 A	EBN202c/200/30	EBN203c/200/30	EBN202c/200/100	EBN203c/200/100
225 A	EBN202c/225/30	EBN203c/225/30	EBN202c/225/100	EBN203c/225/100
250 A	EBN202c/250/30	EBN203c/250/30	EBN202c/250/100	EBN203c/250

EBS type (37kA/460V)				
Rated current, In	Rated residual current, I $\Delta \mathrm{n}$: 30mA		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	3-pole	4-pole	3-pole	4-pole
100 A	EBS203c/100/30	EBS204c/100/30	EBS203c/100/100	EBS204c/100/100
125 A	EBS203c/125/30	EBS204c/125/30	EBS203c/125/100	EBS204c/125/100
150 A	EBS203c/150/30	EBS204c/150/30	EBS203c/150/100	EBS204c/150/100
175 A	EBS203c/175/30	EBS204c/175/30	EBS203c/175/100	EBS204c/175/100
200 A	EBS203c/200/30	EBS204c/200/30	EBS203c/200/100	EBS204c/200/100
225 A	EBS203c/225/30	EBS204c/225/30	EBS203c/225/100	EBS204c/225/100
250 A	EBS203c/250/30	EBS204c/250/30	EBS203c/250/100	EBS204c/250/100

EBH type ($50 \mathrm{kA} / 460 \mathrm{~V}$)

Rated current, In	Rated residual current, I $\Delta \mathrm{n}$: 30mA		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	3-pole	4-pole	3-pole	4-pole
100 A	EBH203c/100/30	EBH204c/100/30	EBH203c/100/100	EBH204c/100/100
125 A	EBH203c/125/30	EBH204c/125/30	EBH203c/125/100	EBH204c/125/100
150 A	EBH203c/150/30	EBH204c/150/30	EBH203c/150/100	EBH204c/150/100
175 A	EBH203c/175/30	EBH204c/175/30	EBH203c/175/100	EBH204c/175/100
200 A	EBH203c/200/30	EBH204c/200/30	EBH203c/200/100	EBH204c/200/100
225 A	EBH203c/225/30	EBH204c/225/30	EBH203c/225/100	EBH204c/225/100
250 A	EBH203c/250/30	EBH204c/250/30	EBH203c/250/100	EBH204c/250/100

Accessories

Electrical auxiliaries

Maximum possibilities

T-position	Not available
R-position	Option of $A X$ or $A L$ or $A X+A L$

Note) For more detail see 74 page

External accessories

EBN250c EBS250c EBH250c	Name
IB23	Insulation barrier
TCL33	Terminal cover (Long) - Inde type, D-handle type, N-handle type
TCS33	Terminal cover (Short) - Inde type, D-handle type, N-handle type
DH250	Rotary handle (Direct)
DHK250	Rotary handle (Direct, Key lock)
EH250	Rotary handle (Extended)
RTB3	Rear terminal (Bar)
RTR3	Rear terminal (Round)
Handle lock	

Note) For more detail see 82 page

- Inde type: This cover is used without auxiliary handle.
- D-handle type: This cover is used with D-handle.
- N -handle type: This cover is used with N -handle.

EBS403c

EBL404c

For more information	
- Drawings	>119 page
- Trip curves	>104 page
- Accessories	>75 page
- Connection and mounting	>128 page

Ratings

Frame size			400AF							
Type and pole			N-type		S-type		H-type		L-type	
	3 -pole (3-sensor)		EBN403c		EBS403c		EBH403c		EBL403c	
	4-pole (3-sensor)		EBN404c		EBS404c		EBH404c		EBL404c	
Rated current, In			250-300-350-400A							
Rated residual current, I $\Delta \mathrm{n}$			30, 100/200/500mA (Adjustable)							
Residual current off-time at $\mathrm{I} \Delta \mathrm{n}$			$\leq 0.1 \mathrm{sec}$							
Rated operational voltage, Ue			220/460V							
Rated impulse withstand voltage, Uimp			6kV							
Wiring system	2-pole (2-sensor)		102W, 103W, 3Ø3W							
	3 -pole (3-sensor)		1Ø2W, 1Ø3W, 3Ø3W, 3Ø4W							
	4-pole (3-sensor)		1Ø2W, 1Ø3W, 3Ø3W, 3Ø4W							
Rated short-circuit breaking			N-type		S-type				L-type	
capacity, Icu	AC	415V/460V	37kA		50kA		65kA		85kA	
		220/250V	50kA		75kA		85kA		125kA	
lcs=\% \times Icu			100\%		100\%		100\%		75\%	
Protective function			Overload, Short-circuit and ground fault							
Type of trip unit			Thermal-Magnetic							
Magnetic trip range			8~12ln							
Endurance	Mechanical		4,000 operations							
	Electrical		1,000 operations							
Connection Standard			Front connection							
Mounting Standard			Screw fixing							
Dimensions (mm)		Pole	3p	4p	3p	4 p	$3 p$	4p	3p	4p
		a	140	184	140	184	140	184	140	184
		b	257		257		257		257	
		c1 Note)	109		109		109		109	
		c2 Note)	113		113		113		113	
		d	145		145		145		145	
Weight, kg		Standard	7	8.4	7	8.4	7		7	
Certification		Pole	3 p	4 p	3p	4 p	3p	4 p	$3 p$	4p
CE marking			-		-		-		-	
Note) 1. Depth by door cut size : c1 for large cut, c2 for small cut 2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB. 3. 4 -pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current. 4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity.										

Ordering types

Breaker types

EBN type (25kA/460V)				
Rated current, In	Rated residual current, $\mathrm{I} \Delta \mathrm{n}: 30 \mathrm{~mA}$		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	3-pole	4-pole	3-pole	4-pole
250 A	EBN403c/250/30	EBN404c/250/30	EBN403c/250/100	EBN404c/250/100
300 A	EBN403c/300/30	EBN404c/300/30	EBN403c/300/100	EBN404c/300/100
350 A	EBN403c/350/30	EBN404c/350/30	EBN403c/350/100	EBN404c/350/100
400 A	EBN403c/400/30	EBN404c/400/30	EBN403c/400/100	EBN404c/400/100

EBS type (50kA/460V)				
Rated current, In	Rated residual current, $\mathrm{I} \Delta \mathrm{n}: \mathbf{3 0 m A}$		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	3-pole	4-pole	3-pole	4-pole
250 A	EBS403c/250/30	EBS404c/250/30	EBS403c/250/100	EBS404c/250/100
300 A	EBS403c/300/30	EBS404c/300/30	EBS403c/300/100	EBS404c/300/100
350 A	EBS403c/350/30	EBS404c/350/30	EBS403c/350/100	EBS404c/350/100
400 A	EBS403c/400/30	EBS404c/400/30	EBS403c/400/100	EBS404c/400/100

EBH type (65kA/460V)				
Rated current, In	Rated residual current, I $\Delta \mathrm{n}: 30 \mathrm{~mA}$		Rated residual current, I $\Delta \mathrm{n}$: 100/200/500mA	
	3-pole	4-pole	3-pole	4-pole
250 A	EBH403c/250/30	EBH404c/250/30	EBH403c/250/100	EBH404c/250/100
300 A	EBH403c/300/30	EBH404c/300/30	EBH403c/300/100	EBH404c/300/100
350 A	EBH403c/350/30	EBH404c/350/30	EBH403c/350/100	EBH404c/350/100
400 A	EBH403c/400/30	EBH404c/400/30	EBH403c/400/100	EBH404c/400/100

EBL type ($85 \mathrm{kA} / 460 \mathrm{~V}$)

Rated current, $\mathbf{I n}$	Rated residual current, $\mathbf{I \Delta n : ~ 3 0 m A ~}$	Rated residual current, $\mathbf{I \Delta n : ~ 1 0 0 / 2 0 0 / 5 0 0 m A ~}$		
	3-pole	4-pole	3-pole	4-pole
250 A	EBL403c/250/30	EBL404c/250/30	EBL403c/250/100	EBL404c/250/100
300 A	EBL403c/300/30	EBL404c/300/30	EBL403c/300/100	EBL404c/300/100
350 A	EBL403c/350/30	EBL404c/350/30	EBL403c/350/100	EBL404c/350/100
400 A	EBL403c/400/30	EBL404c/400/30	EBL403c/400/100	EBL404c/400/100

Accessories

Electrical auxiliaries

AX	Auxiliary switch	$b \quad d$
AL	Alarm switch	R $\mathrm{R}^{\text {T }}$
SHT	Shunt trip	$0-$
UVT	Undervoltage trip	0\%00

Maximum possibilities

T-position Not available

R-position Option of 2AX, 2AL and SHT or UVT
Note) For more detail see 75 page
External accessories

IBL400	Insulation barrier
T1-43A	Terminal cover (Long) - 2, 3pole
T1-44A	Terminal cover (Long) - 4pole
N-70	Rotary handle (Direct)
E-70U	Rotary handle (Extended)
MI-43	Mechanical interlock - 2, 3pole
MI-44	Mechanical interlock - 4pole

[^2]Electrical auxiliaries of 100~250AF

Maximum possibilities

Position	Type	ABN100c		ABH125c		ABH250c	EBN100c	EBH125c	EBH250c
		2p	3/4p	2p	3/4p	2/3/4p	2/3/4p	3/4p	2/3/4p
Left-hand seat	AX	-	1	-	1	1	1	1	1
	AL	-	1	-	1	1	1	1	1
	$A X+A L$	-	1	-	1	1	1	1	1
Right-hand seat	AX	1	1	1	1	1	-	-	-
	AL	1	1	1	1	1	-	-	-
	AX + AL	1	1	1	1	1	-	-	-
	SHT/UVT	1	1	1	1	1	-	-	-

Electrical auxiliaries of 400~800AF

Maximum possibilities

Position	Type	MCCB $(400 \sim 800 A F)$	ELCB $(400 \sim 800 A F)$
Left-hand seat	AX	2	2
	AL	2	2
Right-hand	SHT UVT	1	1
	AL	2	-
	$\mathrm{SHT} / \mathrm{UVT}$	2	-

Rotary handles

Direct type (DH 30~250AF)

Key lock (DH 30~250AF)

(N 30~250AF)

Extended type

(30~250AF)

(400~800AF)

The rotary handle operating mechanism is available in either the direct version or in the extended version on the compartment door. It is always fitted with a compartment door lock and on a request it can be supplied with a key lock in the open position.

Direct type , D-handle and N-handle

-D-handle : Directly mountable to a circuit breaker. Trip button is built as standard. Key lock type is optional.
$-N$-handle : Directly mountable to a circuit breaker. Door is locked in the Off state. handle size is greater than D-handle.
Extended type, E-handle
It is used in case direct type handle can not be applied because of the longer distance between the breaker and the panel door.

Type

Direct type	Direct type (Key lock)	Extended type	Breaker type	
			МССВ	ELCB
N-30c	-	-	ABN50c/60c/100c/100e	EBN50c/60c/100c
DH100	DHK100	EH100	ABS30c/50c/60c	EBS30c/50c/60c
N-40c	-	-	ABS125c ABH50c/125c ABL125c	EBS125c EBH50c/125c
DH125	DHK125	EH125		
N-50c	-	-	ABN/S/H/L250c	EBN/S/H250c
DH250	DHK250	EH250		
N-70	-	E-70U	ABN/S/H/L400c	EBN/S/H/L400c
N-80	-	E-80U	ABN/S/L800c	EBN/S/L800c

Note: Padlock type for N -handle

- On or OFF state type - Only OFF state type

Type suffix according to the mounting position

S-type
Line

Load

L-type

R-type

Installing the D-handle

ABN100c, EBN100c

ABH125c, EBH125c
ABH250c, EBH250c

Cutting panel

Accessories

E-handle

Installing the E-handle

ABN100c, EBN100c
ABH125c, EBH125c
ABH250c, EBH250c

Cutting panel

Note: An extension shaft that must be adjusted to the distance between back of circuit breaker and door

Operating test

\triangle CAUTION

If the door is opened with much pressure when the position of handle is On or Trip, the handle lock lever will be demaged.

Trip position : Panel door can't be opened

Locking system

[^3]
Accessories

N -handle

How to mount

1) Drilling on the panel door
(1) All the N handles require the same size of mounting hole.
(2) Drill the holes according to the Fig. 1

<Fig 1>

(2) Mounting base

(1) Prepare a mounting base according to the Fig. 2. The distance between the door panel and the mounting base should be A+2. Dimension A is shown in the Fig.
(2) In the case of horizontal mounting turn the breaker mounting holes by 90 degrees

(3) Fixing
(1) Fixing a breaker and a handle at the same time
a) As shown in the Fig. 3 a breaker and a handle can be fixed at the same time on a mounting base with the 4 (long) screws enclosed.
b) Have the breaker handle and the lever of N handle be located in the position shown in Fig. 4.
<Fig 3>

<Fig 4>
(2) Fixing a handle and a breaker step by step
a) Check if there is any thin membrane in the mounting hole of the breaker cover and remove it, If exists.
b) Have the breaker handle and the lever of N handle be located in the position shown in Fig. 4.
c) Fix the N handle on the breaker with the 2 (short) screws enclosed.
d) Fix the breaker on a mounting base with the 2 (long) screws
(4) Fixing front plate and lock plate
(1) Set the front plate and the locking plate on the door as shown in Fig. 6 fix them with screws.
(2) Adjust if front plate or handle is at tilt against the breaker .
(3) Verify that locking plate and locking lever interact on each other properly when the panel door is closed. If necessary adjust them by following instructions.
a) In the event the panel door is not fully closed

This happens if the distance between the door panel and the mounting base the panels of the door is short. Loosen the adjusting screw in the lock plate and move the platein the direction of the arrow as shown in Fig. 9.
b) In the event the door does not lock after closing the door This happens if the distance between the door panel and the mounting base the panels of the door is long. Loosen the adjusting screw in the lock plate and move the plate in the direction of the arrow as shown in Fig. 10.

<Fig 5>

<Fig 9>

Accessories

<Fig 11>

<Fig 12>

<Fig 13>
($\mathrm{N}-30,40,50$)

(N-70, N-80)

<Fig 14>

<Fig 15>

N -handle

(1) Operation in the door closed

(1) To have the breaker On turn the handle to be vertical. <Fig. 11>
(2) To have the breaker Off turn the handle to be horizontal. <Fig. 12>
(3) If the breaker is tripped, the handle points to the Trip position.
(4) To reset the breaker turn the handle to Reset position.

(2) Unlocking the panel door

(1) The door is locked and will not open at On, Off and Trip status.
(2) To unlock the door from Off or Trip status turn the handle toward OPEN direction. (Unlocked after taking the hand off the handle.)
(3) To unlock the door from on state turn the Release screw clockwise <Fig. 13>

(3) Operation of the breaker in the door open

(1) When the door is open the breaker will not be on as the lock lever operates.
(2) To release the locking pull the lock lever to be nearly horizontal position. Then the breaker can be closed. <Fig. 14>
(3) If the door is closed the lock lever will be reset automatically.

Padlocking

(1) Lockable at On or Off state with a padlock. (Padlock is not supplied) - Lockable at Off state with a padlock is an optional spec.
(2) Pull the lock plate on the front of the handle and fasten the lock. <Fig. 15>
(3) If the breaker is tripped after padlocking at on state, the handle will point to the Trip.
(4) Padlock diameter should be $3.5 \sim 6 \mathrm{~mm}$

Terminal covers

The terminal covers are applied to the circuit-breaker to prevent accidental contact with live parts and thereby guarantee protection against direct contacts.
Two types by length are available and provide IP20 degree of protection.
Also, covers ara classified in to 2 different type: Independent, Attachable and detachable with D or N handle

- Short type covers, TCS:

For fixed circuit-breakers with rear terminals and for moving parts of plug-in.

- Long type covers, TCL:

For fixed circuit-breakers with front, front extended, front for cables terminals.

sis co, lad

Accessories

Insulation barriers

Insulation barrier allows the insulation characteristics between the phases at the connections to be increased. They are mounted from the front, even with the circuit-breaker already installed, inserting them into the corresponding slots.
They are incompatible with both the insulating terminal covers.
It is possible to mount the phase separating partitions between two circuit-breakers side by side.

Type	Breaker	
	MCCB	ELCB
IB-13	ABN50c/60c/100c/100e ABS30c/50c/60c	EBN50c/60c/100c EBS30c/50c/60c
IB-23	ABS125c ABH50c/125c ABN250c, ABS250c ABH250c ABL125c, ABL250c	EBS125c EBH50c/125c EBN250c, EBS250c EBH250c
IBL400	ABN/S/H/L400c	EBN/S/H/L400c
IBL800	ABN/S/L800c	EBN/S/L800c

Insulation barriers for line side are provided as standard.

Rear connection terminals

Rear connection terminals are used to adapt the circuit breakers to switchboards or other applications that require rear connection.
There are two kinds of rear connection terminals.

- Flat type
- Round type

Round type terminals

Breaker	For 2-pole	For 3-pole	For 4-pole
ABN100c 50AF	RTR1-52	RTR1-53	-
ABN100c 100AF	RTR1-102	RTR1-103	RTR1-104
ABH125c	RTR2-102	RTR2-103	RTR2-104
ABH250c	RTR3-202	RTR3-203	RTR3-204

Flat type terminals

Breaker	For 2-pole	For 3-pole	For 4-pole
ABN100c	RTB1-102	RTB1-103	RTB1-104
$A B H 125 c$	RTB2-102	RTB2-103	RTB2-104
$A B H 250 c$	RTB3-202	RTB3-203	RTB3-204

Accessories

Mechanical interlock

The mechanical interlock is installed on the front of two breakers mounted side by side, in either the 3-pole or 4-pole version and prevents simultaneous closing of the two breakers. So it is suitable for consisting of manual sourcechangeover system.

Type numbering system

MI	4	
Type		AF
Mechanical	1	100AF
interlock	2	125AF
	3	250AF
	4	400AF
	8	800AF

3		
Pole		
3	$3 P$	
4	$4 P$	

Types and applicable breakers

Type	MCCB	ELCB
MI-13, 14	ABS30c, ABS50c, ABS60c, ABN50c, ABN60c, ABN100c, ABN100e	EBS30c, EBS50c, EBS60c, EBN50c, EBN60c, EBN100c
MI-23, 24	ABS125c, ABH50c, ABH125c, ABL125c	EBS125c, EBH50c, EBH125c
MI-33, 34	ABN/S/H/L250c	EBN/S/H250c
MI-43, 44	ABN/S/H/L400c	EBN/S/H/L400c
MI-83, 84	ABN/S/L800c	EBN/S/L800c

Note) MI is not applicable to 2 -pole version breakers of 100AF and 125AF.
Layout

MCCB panel cutting

MCCB panel drilling

Cutting										in: mm
	MI-13, 14		MI-23, 24		M1-33, 34		MI-43, 44		MI-83, 84	
	A	B	A	B	A	B	A	B	A	B
Narrow	52	66	52	66	52	66	100	111	100	111
Wide	86	62	102	62	104	62	152	97	152	97

Breaker	C		D		E	
	3P	4P	3P	4P	3P	4P
100AF	25	25	110.5	110.5	70	95
125AF	30	30	132	132	84	114
250AF	35	35	126	126	99	134
400AF	44	44	215	215	166	210
800AF	70	70	243	243	210	280

Plug-in base

Plug-in devices

Plug-in device makes it possible to extract and/or rapidly replace the circuit breaker without having to touch connections for ship and important installations.
The plug-in base is the fixed part of the plug-in version of the circuit-breaker. It will be installed directly on the back plate of panel.
The circuit-breaker is racked out by unscrewing the top and bottom fixing screws.

Normal type plug-in MCCB

- MCCB current rating upto 250A
- Generally used in switchgears

Double-row type plug-in MCCB

- For 125AF MCCB
- Generally used in branch circuits

Plug-in type MCCB (Plug-in terminal built)

ABH103c plug-in type
Type names of blocks

Breaker	Arrangement	Plug-in block	Remark
	Normal	PB-A3-FR	
	Single-row	PB-A3-1DB	
	Double-row	PB-A3-2DB	
	Line-only	PB-A3-FRL	
ABH125c	Normal	PB-C3-FR	
	Single-row	PB-C3-1DB	
ABH250c	Double-row	PB-C3-2DB	
$400 A F$	Line-only	PB-C3-FRL	
800AF	Normal	PB-D3-FR	
	Normal	PB-I3-FR/PB-I3-FRL	

ABH203c plug-in type

Accessories

Remote operation

Motor operator

Motor operators can also be operated by manual. The motor drives a mechanism which switches TD \& TS toggle handle to the "On" and "Off/Reset" positions.

- The manual actuator handle is located on the front of the cover.
- Manual or Automatic operation can be selected.
- Applicable to 2, 3 and 4-pole breakers.

MCCB			Type	Control voltage	Actuation current (A)	Response time (ms)		Mechanical service life (operations)	No. of operations per hour
2 P	3P	4P				Closing	Opening		
-	ABN53c, ABN63c, ABN103c, ABN103d, ABN103e, ABS33c, ABS53c, ABS63c	ABN54c, ABN64c, ABN104c, ABN104d, ABN104e, ABS34c, ABS54c, ABS64c	MOP-M1	(1) DC24V (2) AC110V~DC110V (3) AC230V/DC220V	$\begin{gathered} \leq 3 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.5 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	700	700	10,000	120
-	ABS103c, ABH53c, ABH103c ABL103c	ABS104c, ABH54c, ABH104c ABL104c	MOP-M2	(1) DC24V (2) AC110V~DC110V (3) AC230V/DC220V	$\begin{gathered} \leq 3 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.5 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	840	840	10,000	120
ABN202c, ABS202c, ABH202c ABL202c	ABN203c, ABS203c, ABH203c ABL203c	ABN204c, ABS204c, ABH204c ABL204c	MOP-M3	(1) DC24V (2) AC110V~DC110V (3) AC230V/DC220V	$\begin{gathered} \leq 3 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.5 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	840	840	10,000	120
ABN402c, ABS402c, ABH402c, ABL402c	ABN403c, ABS403c, ABH403c, ABL403c	ABN404c, ABS404c, ABH404c, ABL404c	MOP-M4	(1) DC24V (2) AC110~DC110V (3) $\mathrm{AC} 230 \mathrm{~V} / \mathrm{DC} 220 \mathrm{~V}$	$\begin{gathered} \leq 6 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.8 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	1,200	1,200	4,000	60
ABN802c, ABS802c, ABL802c	ABN803c,, ABS803c, ABL803c	ABN804c, ABS804c, ABL804c	MOP-M5	(1) DC24V (2) AC110~DC110V (3) AC230V/DC220V	$\begin{gathered} \leq 6 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.8 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	1,200	1,200	2,500	60
-	ABS1003b, ABS1203b ABL1003b, ABL1203b	ABS1004b, ABS1204b ABL1004b, ABL1204b	MOP-M6	(1) AC230V/DC220V	$\begin{gathered} \leq 6 \mathrm{~A}(\mathrm{DC} 24 \mathrm{~V}) \\ \leq 0.8 \mathrm{~A}(\mathrm{AC}) \end{gathered}$	1,500	1,500	2,500	20

Remote operation

Standard connection

1) Remote On and Off of MCCB and manual operation
2) Be careful not to change the polarity at DC 24 V

Connection with alarm switch (AL)

1) The connection diagram is the method of using a alarm switch (AL) without shunt or undervoltage trip.

A trip due to a fault or trip button prevent a remote reset.
2) The fault must be cleared surely and reset it with manual operation.

Manual operation

1) Insert the manual handle into the slot of Motor operator surface and rotate it clockwise.
2) It must be rotated just 180° clockwise for safe operation of micro switch in the motor operator.
3) Return the manual handle after the manual operation
4) Turn the slide switch back to the position of Auto.

CAUTIOn: When the circuit breaker is tripped by trip button in the Off status,
it is impossible to operate motor operator automatically It must be reset by manual operation.

Automatic operation

1) Set the slide switch to Auto, then internal power is closed automatically.
2) Operating frequency should be less than these below regulated values. MOP-M1~M3, M7 (120 operations per hour) , MOP-M4 (60 operations per hour) , MOP-M5, M6 (20 operations per hour)
3) Use the On/Off switch in the range of regulated values.
4) It may interfere near communication equipments because of internal switching power supply. It's recommended that a noise filter be installed to power supply.
5) Please do not input On/Off signals at the same time during the automatic operation.
6) If the circuit breaker has a UVT attached inside, charge a UVT on the rated voltage before performing Motor operator.

Motor operator

Feature

(1) On position indication (Red color)
(2) Trip position indication (White color)
(3) Off position indication (Green color)
(4) Button for push to trip
(5) On/Off/Reset selection lever
(6) Manual/Auto selection lever

MOP-M4/M5/M6

Type numbering system

MCCB

* Warning: Mounting accessories is not available at the left side of 2pole MCCB (Up to 125AF)

ELCB

E8		S		10	3	C	10		30 A	AK		
ELCB		Type		Ampere	Pole	Series			Rated residual		cessory	
	N	N-type	3	30AF	2 2-pole				current	AX Au	uxiliary switch	
	S	S-type	5	50AF	3 3-pole				30 mA	AL Ala	arm switch	
	H	H-type	6	60AF	4 4-pole				100/200/500mA	Ro	otary handle	
	L	L-type	10	100/125AF							Direct)	
			20	225/250AF			Rate	urrent			otary handle	
			40	400AF			15A	225A			Extended)	
			80	800AF			20A	250A		RTR	ear terminal	
			100	1000AF			30A	300A		RTB	Rear terminal	
			120	1200AF			40A	350A				
							50A	400A				
							60A	500A			sition \& T	ype
							75A	630A			Left	Lead
							100A	700A		R LWT	Side	Wire
							125A	800A			Mounting	type
							150A	1000A			Left	Terminal
							175A	1200A		R TBT	Side	Block
							200A				Mounting	ype

[^4]
Characteristics curves

Characteristics curves

Breaker types

MCCB
ABS125c
ABH50c/125c
ABL125c
ELCB
EBS125c
EBH50c/125c

Compensation curves
Rated current: 15~100A

Rated current: 125A

Rated current: 15~30A, 40~100A

Rated current: 125A

Breaker types

MCCB

ABN250c, ABS250c
ABH250c, ABL250c

ELCB

EBN250c, EBS250c
EBH250c

Compensation curves

Rated current: 100~225A

Rated current: 250A

Characteristics curves

Breaker types

МССВ

ABN400c, ABS400c, ABH400c, ABL400c ABN800c, ABS800c, ABL800c

ELCB

EBN400c, EBS400c, EBH400c, EBL400c
EBN800c, EBS800c, EBL800c

Compensation curves

Rated current: 250~400A

Rated current -

Rated current: 500~800A

Breaker types

МССВ

ABS1000b, ABL1000b
ABS1200b, ABL1200b

ELCB

EBS1003b, EBS1203b

Compensation curves

Breaker types
мсСв
ABS1200bE

Rated current: 1000~1200A

Rated current: 1200A

Dimensions

Rear connection terminals

Bar type

MCCB	A	B	C	D	E
ABN100c	115	37	87	$\varnothing 8.5$	25
ABH125c	135	37	87	$\varnothing 8.5$	30
ABH250c	144	57.5	93.5	$\varnothing 8.5$	35

Round type

MCCB	A	B	C	D	E
ABN100c 50AF	115	42	92	M6	25
ABN100c 100AF	115	52	102	M8	25
ABH125c	135	52	102	M8	30
ABH250c	144	70	106	M8	35

Rotary handles

Direct mounting type (D-handle, 30~250AF)

Type	$\mathbf{A}(\mathbf{m m})$	$\mathbf{B}(\mathbf{m m})$	$\mathbf{C}(\mathbf{m m})$	$\mathbf{D}(\mathbf{m m})$	$\mathbf{E (m m)}$	Remarks
DH100	110.5	78	90	92	103.4	100AF
DH125	132	94	105	108	120	125AF
DH250	126	108	121	110	122	250AF

Direct mounting type (N-handle, 30~250AF)
$\mathrm{N}-30 \mathrm{c}, 40 \mathrm{c}, 50 \mathrm{c}$

N-handle	N-30c	N-40c	N-50c
Note	100 AF	125 AF	250 AF
$\mathbf{A}(\mathrm{mm})$	103	103	103

Direct mounting type (N-handle, 400~800AF)

Rotary handles

Extended mounting type (E-handle) (30~250AF)

Type	A (mm)	B (mm)	$\mathbf{C}(\mathbf{m m})$	Remarks
EH100	$\min 150, \max 573.5($ Shaft 469 mm$)$	47	$\varnothing 53$	100 AF
EH125	$\min 150, \max 573.5($ Shaft 469 mm$)$	47	$\varnothing 53$	$125 A F$
EH250	$\min 150, \max 571.5($ Shaft 469 mm$)$	47	$\varnothing 53$	$250 A F$

Extended mounting type (N-handle, 400~800AF)

E-80U (800AF)

Remote operation

	A1	A2	A3	B1	B2	B3	B4	C1	C2
MOP-M1	110.5	102	51	75	37.5	100	37.5	128	60
MOP-M2	132	116	58	90	45	120	45	122	60
MOP-M3	126	116	55	105	52.5	140	52.5	125	60
MOP-M4	215	176	88	140	70	184	70	198	109
MOP-M5	243	176	88	210	105	280	105	198	109
MOP-M6	322.5	176	65.5	220	110	289	110	210	105

Technical Information

Standard accessories

The following accessories for mounting, connection and insulation are standard items and are packed with Metasol series circuit breakers.

Item	100AF	125AF	250AF	400AF	800AF
Fixing screw					
	$\begin{aligned} & 2 P: 2 E A(M 4 \times 60) \\ & 3 P: 2 E A(M 4 \times 60) \\ & 4 P: 4 E A(M 4 \times 60) \end{aligned}$	$\begin{aligned} & 2 P: 2 E A(M 4 \times 60) \\ & 3 P: 2 E A(M 4 \times 60) \\ & 4 P: 4 E A(M 4 \times 60) \end{aligned}$	$\begin{aligned} & 2 P: 2 E A(M 4 \times 55) \\ & 3 P: 2 E A(M 4 \times 55) \\ & 4 P: 4 E A(M 4 \times 55) \end{aligned}$	$\begin{aligned} & \text { 2P: 4EA }(M 6 \times 100) \\ & \text { 3P: 4EA }(M 6 \times 100) \\ & \text { 4P: 4EA }(M 6 \times 100) \end{aligned}$	$\begin{aligned} & \text { 2P: 4EA }(M 6 \times 100) \\ & \text { 3P: 4EA }(M 6 \times 100) \\ & \text { 4P: 4EA }(M 6 \times 100) \end{aligned}$
Terminal bolt					
	$\begin{gathered} 3 \sim 50 \mathrm{~A} \\ 2 \mathrm{P}: 4 \mathrm{EA}(\mathrm{M} 5 \times 14) \\ \text { 3P: 6EA }(\mathrm{M} 5 \times 14) \\ \text { 4P: } 8 \mathrm{EA}(\mathrm{M} 5 \times 14) \\ 60 \sim 100 \mathrm{~A} \\ 2 \mathrm{C}: 4 \mathrm{EA}(\mathrm{M} 8 \times 14) \\ \text { 3P: } 6 \mathrm{EA}(\mathrm{M} 8 \times 14) \\ 4 \mathrm{P}: 8 \mathrm{EA}(\mathrm{M} 8 \times 14) \end{gathered}$	$\begin{aligned} & 2 P: 4 E A(M 8 \times 14) \\ & 3 P: 6 E A(M 8 \times 14) \\ & 4 P: 8 E A(M 8 \times 14) \end{aligned}$	$\begin{aligned} & \text { 2P: 4EA (M8×20) } \\ & \text { 3P: } 6 \mathrm{EA}(\mathrm{M} 8 \times 20) \\ & 4 \mathrm{P}: 8 \mathrm{EA}(\mathrm{M} 8 \times 20) \end{aligned}$	$\begin{aligned} & \text { 2P: 4EA }(\text { M10×30 }) \\ & \text { 3P: 6EA (M10×30) } \\ & \text { 4P: 8EA (M10×30) } \end{aligned}$	$\begin{aligned} & \text { 2P: 4EA (M12×35) } \\ & \text { 3P: 6EA (M12×35) } \\ & \text { 4P: 8EA (M12×35) } \end{aligned}$
Insulation barrier					
	$\begin{aligned} & \text { 2P: 1EA } \\ & \text { 3P: 2EA } \\ & \text { 4P: 3EA } \end{aligned}$	$\begin{aligned} & \text { 2P: 1EA } \\ & \text { 3P: 2EA } \\ & \text { 4P: 3EA } \end{aligned}$	$\begin{aligned} & \text { 2P: 1EA } \\ & \text { 3P: 2EA } \\ & \text { 4P: 3EA } \end{aligned}$	$\begin{aligned} & \text { 2P: 1EA } \\ & \text { 3P: 2EA } \\ & \text { 4P: 3EA } \end{aligned}$	$\begin{aligned} & \text { 2P: 1EA } \\ & \text { 3P: 2EA } \\ & \text { 4P: 3EA } \end{aligned}$

Fixing screws for rotary handles

Handle type	$\mathrm{N}-30 \mathrm{c}$	N-40c	N-50c	N-70	N-80
Applied MCCB	ABN 50c/60c/100c ABS 30c/50c/60c ABN100e	ABS 125c ABH 50c ABH 125c ABL 125c	ABN 250c ABS 250c ABH 250c ABL 250c	ABN 400c ABS 400c ABH 400c ABL 400c	ABN 800c ABS 800c ABL 800c
Applied ELCB	EBN 50c/60c/100c EBS 30c/50c/60c	$\begin{aligned} & \text { EBS 125c } \\ & \text { EBH 50c } \\ & \text { EBH 125c } \end{aligned}$	EBN 250c EBS 250c EBH 250c	EBN 400c EBS 400c EBH 400c EBL 400c	$\begin{aligned} & \text { EBN 800c } \\ & \text { EBS 800c } \\ & \text { EBL 800c } \end{aligned}$
Fixing screw (short)	-	-	-	$\mathrm{M} 6 \times 16$	$\mathrm{M} 6 \times 16$
Fixing screw (long)	$\mathrm{M} 4 \times 85$	$\mathrm{M} 4 \times 85$	$\mathrm{M} 4 \times 85$	M6×110	$\mathrm{M} 6 \times 110$

Handle type	DH/EH100	DH/EH125	DH/EH250
Fixing screw	$\mathrm{M} 4 \times 70$	$\mathrm{M} 4 \times 70$	$\mathrm{M} 4 \times 70$

Connection

MCCB

Technical Information

Connection

Special use environment

Table of rated current for Metasol ELCB corrected according to ambient temperature

Ampere frame	Rated current	Model name of Breaker	Rated current	Table of rated current corrected according to ambient temperature (A)						
				$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
30	15	EBS30c	15	15	15	15	15	15	15	15
	20		20	20	20	20	20	19	19	18
	30		30	30	30	30	30	29	28	27
50	40	EBN50c, EBS50c	40	40	40	40	40	39	38	36
	50		50	50	50	50	50	49	47	45
60	60	EBN60c, EBS60c	60	60	60	60	60	58	56	55
100	75	EBN100c	75	75	75	75	75	73	71	68
	100		100	100	100	100	100	97	94	91
125	125	EBH50c, EBS125c, EBH125c	125	125	125	125	125	121	116	107
250	150	EBN250c, EBS250c, EBH250c	150	150	150	150	150	145	140	128
	175		175	175	175	175	175	169	163	150
	200		200	200	200	200	200	193	186	171
	225		225	225	225	225	225	217	209	193
	250		250	250	250	250	250	241	233	214
400	250	EBN400c, EBS400c, EBH400c, EBL400c	250	250	250	250	246	242	238	238
	300		300	300	300	300	295	291	287	287
	350		350	350	350	350	345	339	332	332
	400		400	400	400	400	394	388	381	381
800	700	EBN800c, EBS800c EBL800c	700	700	700	700	689	679	668	668
	800		800	800	800	800	788	776	764	764

Technical document

Special use environment

Environment where ambient temperature is $-5^{\circ} \mathrm{C}$ or less

Molded Case Circuit Breaker is subject to the effect of low temperature brittle of metal part inside and insulator, or changes in viscosity of lubricating oil in device, extra care should be taken not to have the temperature drop extremely with the use of such device as space heater. In addition, in case of using a thermal magnetic trip element (FTU, FMU, ATU) , the operating characteristic changes toward the difficult direction, so you should identify the relationship of protection and correct accordingly.
Although MCCB is not affected by conduction switch, trip, or short circuit isolation in the temperature of - $20^{\circ} \mathrm{C}$, it is highly recommended to use a temperature maintaining device such as space heater. In addition, transportation and passing in stone-cold area in the temperature as low as $-40^{\circ} \mathrm{C}$ is allowed but it is recommend to leave the status of MCCB off or tripped in order to minimize the effect of brittle due to a low temperature.

High humidity condition (Relative humidity 85% or more)

Using Molded Case Circuit Breaker in a place of high humidity requires a rigorous maintenance including installation of anti-humidity agent within the structure in order to prevent the insulation sag of insulator or corrosion of mechanical parts as a result of high humidity. Also, in case of installing MCCB within the enclosed equipment, a space heater needs to be installed as well to prevent dew condensation that might occur due to a drastic temperature change.

Environment where petrochemical gas exists

The contact material of Molded Case Circuit Breaker is silver or silver alloy which develops creation of petrochemical coat that might cause a poor connection if it gets in contact with petrochemical gas.
However, it is easy for petrochemical coat to be mechanically taken off so it is no problem if make-and break operation occurs frequently but it needs to be switched back and forth between make and break if the operation rarely occurs.
The lead wire of moving contact of Molded Case Circuit Breaker can be disconnected as it is corroded or hardened by petrochemical gas. The silver coating is effective to prevent this from occurring and there is a need to increase durability of MCCB with the use of silver coated lead wire if it is used in environment with thick petrochemical gas.

Environment where potentially explosive gas exists

It is advised, in principle, not to install a Molded Case Circuit Breaker that switches and inhibits current in a dangerous place such as this one.

Impact of altitude

If an MCCB is used in an elevated area higher than 2000 m sea level, its operating performance is subject to dramatic drop in atmospheric pressure and temperature. For example, the air pressure is reduced to 80% of ordinary pressure at $2,200 \mathrm{~m}$ and further 50% at $5,500 \mathrm{~m}$ although the short-circuit performance is not affected. If it is used in areas of high sea level, you can do correction based on the correction parameter table in high altitude environment, as described below

* Refer to the correction parameter table in high altitude environment (ANSI C37. 29-1970)

1) How to correct voltage:

- If the rated voltage is AC 600 V at $4,000 \mathrm{~m}$ above sea level,

600 V (rated voltage) $\times 0.82$ (correction parameter) $=492 \mathrm{~V}$
2) How to correct current

- If the rated voltage is AC 800 A at above $4,000 \mathrm{~m}$ sea level,

800 A (rated current) $\times 0.96$ (correction parameter) $=768 \mathrm{~A}$.
[Correction parameter table for altitude]

Altitude	Voltage correction parameter	Current correction parameter
$\mathbf{2 , 0 0 0 m}$	1.00	1.00
$\mathbf{3 , 0 0 0}$	0.91	0.98
$\mathbf{4 , 0 0 0}$	0.82	0.96
$\mathbf{5 , 0 0 0}$	0.73	0.94
$\mathbf{6 , 0 0 0}$	0.65	0.92

Environment with vibration and impulse exercised

Impact of vibration and impulse

An excessive vibration and impulse may cause damage on breaker or other security problems including dynamic strength. An appropriate consideration is required to select a right MCCB for an adverse environmental stress such as this one. Moreover, this stress may incur from vibration during transportation, magnetic impulse while manipulating a switch or may be affected by equipment in surrounding area.
There is a standard call [Vibration Testing Method for Small Electric Appliances] for vibration and impulse test for electric equipment and the seismic and endurance tests of Molded Case Circuit Breaker are conducted in accordance with this standard, considering the circumstance mentioned above.

Vibration

The magnitude of vibration is measured by double amplitude and frequency with the following equation with accelerator.
$\alpha g=0.002 \times$ frequency $(\mathrm{Hz}) \times$ double amplitude (mm)

* $\alpha \mathrm{g}$: multiple of gravitational acceleration ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec} 2$)

There are three types of vibration tests including resonance test, vibration endurance test, and malfunction test as described below.

1) Resonant test

Alter the frequency of sinusoidal wave within the range of $0 \sim 55 \mathrm{~Hz}$ gradually with $0.5 \sim 1 \mathrm{~mm}$ of double amplitude applied to see if there is any occurrence of vibration on a specific part of MCCB.
2) Vibration endurance test

A sinusoidal wave with double amplitude of $0.5 \sim 1 \mathrm{~mm}$ and frequency of 55 Hz (resonant frequency obtained in previous clause if there is a resonant point) is manually created to check the operational status.
3) Malfunction test

Apply vibration for 10 minutes for each condition of altering double amplitude and frequency to check if there is any malfunction in MCCB.

Impulse

The magnitude of impulse is denoted by the multiple of gravitational acceleration imposed on the equipment and part. The test is conducted through a drop impulse test.

Impact of high frequency

In case of high frequency current, you are required to reduce the rated current of the breaker with a thermal magnetic trip element embedded due to heat incurred by the skin effect of conductor and/or core less of structure. The reduction rate varies according to the frame Size and rated current and decreases down to $70 \sim 80 \%$ at 400 Hz . In addition, the core loss decreases attractive force, which leads to increase of instantaneous trip current.

* Core loss: It refers to the electrical loss in a transformer caused by magnetization of the core that changes over time and is categorized into hysteresis loss and eddy current loss.
* Hysteresis loss: It takes up the majority portion of no-load loss of electric equipment and is calculated like this. $\mathrm{Ph}=\sigma f B m n$
$B m$: maximum value of magnetic flux density, n : constant (1.6~2.0), f: frequency, σ : hysteresis constant
* Eddy current: It refers to an induced electric current formed within the body of a conductor when it moves through a non-uniform or changing magnetic field. The eddy current that incurs at winding of transformer or core is considered as one of the transformer losses as a part of exciting current. It is also called 'eddy current loss'.

Technical document

Use environment with vibration and impulse applied
[Table of seismic performance and internal impulse performance]

		Test	Internal impulse
Test Condition	Mounting vibration, direction of impulse	- Vertical mounting - Top-down, Left-right, Front-back	Picture 1, 2, 3, 4 $(\rightarrow$ Represents the direction of drop) Picture 3 Picture 4
	Status of MCCB	(1) Non-conduction (On or Off status) (2) Status where rated current is conducted until the temperature of MCCB becomes constant and keeps being conducted	Non-conduction (On or Off status)
Test result	Judgment condition	If it is On, it should not be Off If it is Off, it should not be On No abnormal status such as damage, transformation, or annealing of nut part Characteristics of switch and trip after the test must be normal	

Cerfications

MCCB

ELCB

\left.| Type | Approvals | | Certificates |
| :---: | :---: | :---: | :---: |
| Cerficate | Safet certi | IEC | KEMA |
| Mark | and | | |
| name | | | |$\right)$

Safety Instructions

- For your safety, please read user's manual thoroughly before operating
- Contact the nearest authorized service facility for examination, repair, or adjustment.
- Please contact qualified service technician when you need maintenance.

Do not disassemble or repair by yourself!

- Any maintenance and inspection shall be performed by the personnel having expertise concerned.

LSis

- Head Quarter

LS-ro 127(Hogye-dong) Dongan-gu, Anyang-si, Gyeonggi-Do, 14119, Korea Tel: 82-2-2034-4902, 4684, 4429 Fax: 82-2-2034-4555

- LSIS USA Inc. Chicago Head office

980 Woodlands Parkway, Vernon Hills, IL 60061
Tel: 800-891-2941 Fax: 847-383-6543 E-mail: sales.us®lsis.com

■ Overseas Subsidiaries

-LSIS(Dalian) Co., Ltd. (Dalian, Chin)
Tel: 86-411-8730-7510 Fax: 86-411-8730-7560 E-Mail: dskimalsis.com

-LSIS(Wuxi) Co., Ltd. (Wuxi, China)

Tel: 86-510-8534-6666-8005 Fax: 86-510-8534-4078 E-Mail: sojinalsis.com
-LS VINA Industrial Systems Co., Ltd. (Hanoi, Vietnam)
Tel: 84-4-6275-8055 Fax: 84-4-3882-0220 E-Mail: hjchoidalsis.com

-LSIS Middle East FZE (Dubai, U.A.E.)

Tel: 971-4-886-5360 Fax: 971-4-886-5361 E-Mail: shunleealsis.com
-LSIS Europe B.V. (Amsterdam, Netherlands)
Tel: 31-20-654-1420 Fax: 31-20-654-1429 E-Mail: europartnerßlsis.com
-LSIS Japan Co., Ltd. (Tokyo, Japan)
Tel: 81-3-6268-8241 Fax: 81-3-6268-8240 E-Mail: jschunaßlsis.com
-LSIS USA Inc. (Chicago, U.S.A.)
Tel: 1-800-891-2941 Fax: 847-383-6543 E-Mail: sales.usalsis.com

www.lsis.com

- Overseas Branches

-LSIS Shanghai Office (China)
Tel: 86-21-5237-9977 Fax: 86-21-5237-7189
-LSIS Beijing Office (China)
Tel: 86-10-5761-3127 Fax: 86-10-5761-3128 E-Mail: htroh®lsis.com

- LSIS Guangzhou Office (China)

Tel: 86-20-8326-6784 Fax: 86-20-8326-6287 E-Mail: sojhtroh@lsis.com

- LSIS Qingdao Office (China)

Tel: 86-532-8501-6058 Fax: 86-532-8501-6057 E-Mail: htrohQlsis.com

- LSIS Chengdu Office (China)

Tel: 86-28-8670-3200 Fax: 86-28-8670-3203 E-Mail: yangcfalsis.com
-LSIS ShenYang Office (China)
Tel:86-2402321-9050 Fax: 86-24-8386-7210 E-Mail: yangcfalsis.com
-LSIS Jinan Office (China)
Tel: 86-531-8699-7826 Fax: 86-531-8697-7628 E-Mail: yangcfalsis.com
-LSIS Co., Ltd. Tokyo Office (Japan)
Tel: 81-3-6268-8241 Fax: 81-3-6268-8240 E-Mail: jschunadlsis.com
-LSIS Co., Ltd. Rep. Office (Vietnam)
Tel: 84-8-3823-7890 E-Mail: sjbaikalsis.com
-LSIS Moscow Office (Russia)
Tel: 7-495-258-1466 Fax:7-495-258-1467 E-Mail: jdpark1alsis.com
-LSIS Jakarta Office (Indonesia)
Tel: 62-21-293-7614 E-Mail: diohalsis.com

[^0]: Note) Dimension is for 3 pole and breaking capacity is for AC460V.

[^1]: Note) 1. Depth by door cut size : c1 for large cut, c2 for small cut
 2. Do not test withstand voltage or insulation resistance test between poles to avoid the damage of the PCB
 3. 4-pole product's ampacity on neutral conductor is equal to or less than 50% of the rated current.
 4. Rated non-trip current sensitivity is equal to or less than 50% of the rated current sensitivity.

[^2]: Note) For more detail see 82 page

[^3]: Note : In case of EH100/125/250 Semi Type, it is possible to lock E-handle only in the condition of OFF

[^4]: Warning: Mounting accessories is not available at the right side ELCB (Up to 250AF)

