Loads

Minimum load	$F_{am} = 0,0005 C_0 + A \left(\frac{n}{1000}\right)^2$	Symbols A minimum load factor (page 888)
For additional information → page 106		C ₀ basic static load rating [kN] (page 888) F _a axial load [kN] F _{am} minimum axial load [kN] n rotational speed [r/min]
Equivalent dynamic bearing load	P = F _a	P equivalent dynamic bearing load [kN] P ₀ equivalent static bearing load [kN]
For additional information → page 91		
Equivalent static bearing load	$P_0 = F_a$	
For additional information → page 105		

Temperature limits

The permissible operating temperature for cylindrical roller thrust bearings can be limited by:

- the dimensional stability of the bearing washers and rollers
- the cage
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing washers and rollers

The bearings are heat stabilized up to at least $120 \,^{\circ}\text{C}$ (250 °F).

Cages

Brass cages can be used at the same operating temperatures as the bearing washers and rollers. For temperature limits of polymer cages, refer to *Polymer cages*, page 188.

Lubricants

For temperature limits of SKF greases, refer to Selecting a suitable SKF grease, page 116.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept, page 117.

Permissible speed

The speed ratings in the **product table**, **page 888** indicate:

- the **reference speed**, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 130**.

884

Design considerations

Abutment dimensions

Abutment dimensions should fulfil the following:

- Support surfaces in housings and on shafts should be at right angles to the shaft axis and provide uninterrupted support over the entire washer face.
- The abutment diameter on the shaft should be ≥ d_{a min} and in the housing ≤ D_{a max} (fig. 6). Values for d_{a min} and D_{a max} are listed in the product table, page 888
- Shafts and housings should be manufactured to suitable tolerance classes
 (table 4) to provide satisfactory radial guidance for the individual thrust bearing components.
 - Housing centred washers require a radial gap between the shaft and washer bore.
 - Shaft centred washers require a radial gap between the washer and the housing bore.

Cylindrical roller and cage thrust assemblies are generally centred radially by the shaft to reduce the circumferential speed at which the cage slides against the guiding surface. This is particularly important for higherspeed applications. The guiding surface should be ground.

Fig. 6 Abutment diameters ≥ d_{a min} ≤ D_{a max}

Raceways on shafts and in housings

- should have the same hardness, surface finish and axial run-out as a bearing washer, if the load carrying capacity of a cylindrical roller and cage thrust assembly is to be fully exploited
- should be designed using the dimensions
 E_a and E_b (product table, page 888),
 which take radial displacement of the roller set into consideration

For additional information, refer to *Raceways* on shafts and in housings, page 179.

			Table 4
Shaft and housing tolerance	classes		
Bearing component	Prefix	Tolerance class ¹⁾ Shaft centred	Housing centred
Cylindrical roller and cage thrust assemblies	K	h8	-
Shaft washers	WS	h8	_
Housing washers	GS	-	Н9

Designation system Group 1 Group 2 Group 3 Group 4 4.3 4.4 4.5 4.6 Prefixes -Housing washer Cylindrical roller and cage thrust assembly Shaft washer Basic designation Listed in table 4, page 30 LS.. Universal washer, the number following identifies the bore and outside diameter Suffixes -Group 1: Internal design -Group 2: External design (seals, snap ring groove, etc.) -Group 3: Cage design Machined brass cage Glass fibre reinforced PA66 cage Group 4.1: Materials, heat treatment Case-hardened shaft and housing washers **HB1** Bainite-hardened shaft and housing washers Group 4.2: Accuracy, clearance, preload, quiet running Dimensional and geometrical tolerances to class P5 Group 4.3: Bearing sets, matched bearings -Group 4.4: Stabilization -Group 4.5: Lubrication Group 4.6: Other variants

886